首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The Wnt signaling pathway is central to the development of all animals and to cancer progression, yet largely unknown are the pairings of secreted Wnt ligands to their respective Frizzled transmembrane receptors or, in many cases, the relative contributions of canonical (beta-catenin/LEF/TCF) versus noncanonical Wnt signals. Specifically, in the kidney where Wnt-4 is essential for the mesenchymal to epithelial transition that generates the tissue's collecting tubules, the corresponding Frizzled receptor(s) and downstream signaling mechanism(s) are unclear. In this report, we addressed these issues using Madin-Darby Canine Kidney (MDCK) cells, which are competent to form tubules in vitro. Employing established reporter constructs of canonical Wnt/beta-catenin pathway activity, we have determined that MDCK cells are highly responsive to Wnt-4, -1, and -3A, but not to Wnt-5A and control conditions, precisely reflecting functional findings from Wnt-4 null kidney mesenchyme ex vivo rescue studies. We have confirmed that Wnt-4's canonical signaling activity in MDCK cells is mediated by downstream effectors of the Wnt/beta-catenin pathway using beta-Engrailed and dnTCF-4 constructs that suppress this pathway. We have further found that MDCK cells express the Frizzled-6 receptor and that Wnt-4 forms a biochemical complex with the Frizzled-6 CRD. Since Frizzled-6 did not appear to transduce Wnt-4's canonical signal, data supported recently by Golan et al., there presumably exists another as yet unknown Frizzled receptor(s) mediating Wnt-4 activation of beta-catenin/LEF/TCF. Finally, we report that canonical Wnt/beta-catenin signals cells help maintain cell growth and survival in MDCK cells but do not contribute to standard HGF-induced (nonphysiologic) tubule formation. Our results in combination with work from Xenopus laevis (not shown) lead us to believe that Wnt-4 binds both canonical and noncanonical Frizzled receptors, thereby activating Wnt signaling pathways that may each contribute to kidney tubulogenesis.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
Inflammatory bowel diseases are associated with increased risk of developing colon cancer. A possible role of the pro-inflammatory leukotriene D4 (LTD4) in this process has been implicated by the findings that LTD4 can signal increased proliferation and survival, both hallmarks of a cancer cell, in non-transformed intestinal epithelial cells. Here we make the novel finding that LTD4 can also signal increased motility in these cells. In parallel, we found that LTD4 induced a simultaneous transient 10-fold increase in Rac but not Cdc42 activity. These data were also supported by the ability of LTD4 to activate the Rac GDP/GTP exchange factor Vav2. Further, LTD4 triggered a 3-fold transient increase in phosphatidylinositol 3-kinase (PI3K) phosphorylation, a possible upstream activator of the Vav2/Rac signaling pathway. The activation of Rac was blocked by the PI3K inhibitors LY294002 and wortmannin and by transfection of a kinase-negative mutant of PI3K or a dominant-negative form of Vav2. Furthermore, Rac was found to co-localize with actin in LTD4-generated membrane ruffles that were formed by a PI3K-dependent mechanism. In accordance, the inhibition of the PI3K and Rac signaling pathway also blocked the LTD4-induced migration of the intestinal cells. The present data reveal that an inflammatory mediator such as LTD4 cannot only increase proliferation and survival of non-transformed intestinal epithelial cells but also, via a PI3K/Rac signaling pathway, trigger a motile response in such cells. These data demonstrate the capacity of inflammatory mediators to participate in the process by which inflammatory bowel conditions increase the risk for colon cancer development.  相似文献   

12.
13.
We demonstrated previously that leukotriene D4 (LTD4) regulates proliferation of intestinal epithelial cells through a CysLT receptor by protein kinase C (PKC)epsilon-dependent stimulation of the mitogen-activated protein kinase ERK1/2. Our current study provides the first evidence that LTD4 can activate 90-kDa ribosomal S6 kinase (p90RSK) and cAMP-responsive element-binding protein (CREB) via pertussis-toxin-sensitive Gi protein pathways. Transfection and inhibitor experiments revealed that activation of p90RSK, but not CREB, is a PKCepsilon/Raf-1/ERK1/2-dependent process. LTD4-mediated CREB activation was not affected by expression of kinase-dead p90RSK but was abolished by transfection with the regulatory domain of PKCalpha (a specific dominant-inhibitor of PKCalpha). Kinase-negative mutants of p90RSK and CREB (K-p90RSK and K-CREB) blocked the LTD4-induced increase in cell number and DNA synthesis (thymidine incorporation). Compatible with these results, flow cytometry showed that LTD4 caused transition from the G0/G1 to the S+G2/M cell cycle phase, indicating increased proliferation. Similar treatment of cells transfected with K-p90RSK resulted in cell cycle arrest in the G0/G1 phase, consistent with a role of p90RSK in LTD4-induced proliferation. On the other hand, expression of K-CREB caused a substantial buildup in the sub-G0/G1 phase, suggesting a role for CREB in mediating LTD4-mediated survival in intestinal epithelial cells. Our results show that LTD4 regulates proliferation and survival via distinct intracellular signaling pathways in intestinal epithelial cells.  相似文献   

14.
15.
Studies have demonstrated cross talk between beta-catenin and peroxisome proliferator-activated receptor gamma (PPARgamma) signaling pathways. Specifically, activation of PPARgamma induces the proteasomal degradation of beta-catenin in cells that express an adenomatous polyposis coli-containing destruction complex. In contrast, oncogenic beta-catenin is resistant to such degradation and inhibits the expression of PPARgamma target genes. In the present studies, we demonstrate a functional interaction between beta-catenin and PPARgamma that involves the T-cell factor (TCF)/lymphocyte enhancer factor (LEF) binding domain of beta-catenin and a catenin binding domain (CBD) within PPARgamma. Mutation of K312 and K435 in the TCF/LEF binding domain of an oncogenic beta-catenin (S37A) significantly reduces its ability to interact with and inhibit the activity of PPARgamma. Furthermore, these mutations render S37A beta-catenin susceptible to proteasomal degradation in response to activation of PPARgamma. Mutation of F372 within the CBD (helices 7 and 8) of PPARgamma disrupts its binding to beta-catenin and significantly reduces the ability of PPARgamma to induce the proteasomal degradation of beta-catenin. We suggest that in normal cells, PPARgamma can function to suppress tumorigenesis and/or Wnt signaling by targeting phosphorylated beta-catenin to the proteasome through a process involving its CBD. In contrast, oncogenic beta-catenin resists proteasomal degradation by inhibiting PPARgamma activity, which requires its TCF/LEF binding domain.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号