首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid proteinase production using filamentous fungus Humicola lutea 120-5 was studied under batch and continuous fermentation conditions in an airlift bioreactor. A comparison with proteinase production by fungal cells, cultivated in stirred tank bioreactor was made. The process performance in both fermentation devices was similar with respect to substrate utilization, biomass, and enzyme concentration. Continuous acid proteinase production was achieved for 14 days at an optimal dilution rate of 0.05/h with maximum specific activity of 90 U/mg DW of mycelia and yield of 38 U/mg glucose. The volumetric productivity (50 U/ml. h) was approximately 3 times higher than this of the batch system. All continuous experiments were carried out without any bacterial contamination, due to the low pH (3.0-3.5) during the process. The "pellet" type growth of the fungus in the airlift reactor prevented the system from plugging with filaments.  相似文献   

2.
Acid proteinase production by the fungus Humicola lutea 120-5 in continuous culture was studied. The maximum activity of the culture broth reached 2200 U/ml at a dilution rate (D) of 0.05/h. The continuous process was carried out for 1 month without any bacterial contamination, due to low pH (3.0–3.5) during the cultivation.  相似文献   

3.
《Process Biochemistry》1999,34(1):73-76
Humicola lutea 120-5 spores were immobilized in a mixed photo-crosslinked polyvinyl alcohol and calcium-alginate gel. Maximum enzyme synthesis was established with 1:8 (v:v) gel beads: growth medium inoculum and 48 h duration of one cycle. The free cells were very unstable in replacement fermentations. The operational stability of the immobilized system indicated the possibility of the application of Humicola lutea 120-5 in a semi-continuous process for the production of acid proteinase.  相似文献   

4.
The fungus Humicola lutea 120-5 cultivated in casein-containing media, in the presence or absence of inorganic phosphate (Pi), excretes three different molecular forms of acid phosphatase (with Mr values of approximately 140, 70 and 35 kDa). The enzyme forms were isolated and purified 30–100-fold by a procedure involving two steps of ion-exchange chromatography and Sephadex G-200 gel chromatography. It was found that the fungus excretes only one of the phosphatases with the highest Mr (140 kDa) during growth on medium with inorganic nitrogen source (NaNO3). This form (designed AcPh I) was assumed to be a constitutive, since it showed resistance to high Pi-concentrations (10 mM) and its biosynthesis was not affected by the type of nitrogen source (casein or NaNO3). The other two forms (AcPh II-70 and AcPh III-35 kDa) were competitively inhibited by Pi (K i = 0.5 and 0.2 mM, respectively) and were induced by casein. The K m values of AcPh I and AcPh II were estimated as 1.3 mM, while AcPh III showed a higher affinity for p-nitrophenylphosphate (pNPP) with K m of 0.5 mM. The AcPh I–III fractions demonstrated a pH optimum in the range of 4.5–4.8 and an optimal temperature of 55 °C using pNPP as a substrate. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.
Acid phosphatase activities in a culture liquid and mycelial extract were studied in submerged cultures of the filamentous fungus Humicola lutea 120-5 in casein-containingmedia with and without inorganic phosphate (Pi). The Pi-repressible influence on the phosphatase formation was demonstrated. Significant changes in the distribution of acid phosphatase between the mycelial extract and culture liquid were observed at the transition of the strain from exponential to stationary phase. Some differences in the cytochemical localization of phosphatase in dependence of Pi in the media and the role of the enzyme in the release of available phosphorus from the phosphoprotein casein for fungal growth were discussed.  相似文献   

6.
Extracellular acid phosphatase was studied as a minor enzyme of the fungal strain Humicola lutea 120–5 having a clear relation to the secretion of acid proteinases. A medium lacking in mineral orthophosphates ensured a fivefold higher yield of phosphatase while the proteinase production was reduced. An acid phosphatase fraction free of proteinase activity was isolated demonstrating a maximum hydrolysis of 4-nitrophenyl-phosphate at a pH of 4.0 and 50°C. The phosphatase catalyzed a partial dephosphorylation of up to 30% of casein at a pH of 3.0 causing a complete substrate precipitation. Both proteinase and phosphatase biosynthesis increased twofold when natural casein was replaced by partially dephosphorylated casein in the cultivation medium.  相似文献   

7.
Electron microscopic cytochemical procedures were used to determine the cellular location of acid phosphatase in the fungus Humicola lutea grown in casein-containing medium lacking in mineral orthophosphates. In our investigations acid phosphatase in nongerminating conidia was localized on the outer side of the cell wall, in the cell wall, and on the exterior surface of the plasma membrane. The reaction product of acid phosphatase in germinating conidia was seen in the outer wall layer while in young mycelium on the cell surface and in the exocellular space. The relationship between phosphatase activities localized in the cell wall and their role in the enzymatic degradation of the phosphoprotein casein providing available phosphates for cell growth is discussed.  相似文献   

8.
Casein hydrolysis was studied during the cultivation of immobilized Humicola lutea cells producing acid proteinases. By monitoring the cultivation with time, various casein hydrolysates could be obtained, from partially modified proteins (yield 80%) with improved emulsion properties to peptones (yield > 50%) with a degree of hydrolysis >40%. The casein from the fermentation medium appeared to be simultaneously a nitrogen source, an inducer of proteinase biosynthesis, and a substrate for the production of casein hydrolysates. Casein (4%) and glucose (2%) ensured optimal cultivation conditions. The fungal cells, immobilized in calcium alginate beads, required a short cultivation time and demonstrated comparable hydrolysis of casein during five to seven reuses in batch mode. Correspondence to: B. Tchorbanov  相似文献   

9.
Acid phosphatase production by the fungus Humicola lutea 120-5, immobilized in polyurethane sponge, was studied under semicontinuous shake flask fermentation and compared to the enzyme secretion by free cells. The effect of parameters such as the carrier content and the duration of the batch in repeated batch experiments on the phosphatase production half-life was investigated. The best results were obtained with 1.0 g of sponge cubes (about 1.0 cm per side) per culture flask using 72 h runs. In these conditions the half-life of enzyme production by immobilized biocatalyst was 15 sequential cycles (45 days) compared to three cycles (9 days) for the free mycelium. The maximal phosphatase titre registered in free cell fermentation was 2500 U/l (i.e. 100%), while the relative enzyme activity of the optimal immobilized system was over 100% during the whole half-life time of 45 days. Significant improvement (200–215%) in the yield was observed in one-third of this period or 15 days. The supernatant medium obtained at any stage of the repeated batch cultures did not contain free cells and, due to the low pH (3.0–3.5), the whole process was carried out without any bacterial contamination. In comparison with free cell fermentation, the significant improvement of the acid phosphatase production by polyurethane sponge-immobilized H. lutea mycelium as well as its operation stability was confirmed by scanning electron microscopy.  相似文献   

10.
Metarhizium anisopliae is an imperfect entomopathogenic fungus. Once invading into its host,M. anisopliae needs to absorb basic nutrients such as phosphorus from the host haemolymph. A large number of phosphorylated compounds in haemolymph cannot be directly utilised by the fungal cell and must be hydrolysed into available form by phosphatase before ingested. Aims of this paper were to investigate optimum fermentation conditions for production of acid phosphatase and phosphatase isoenzymes byMetarhizium anisopliae. The optimum fermentation conditions were: glucose, 20 g/l; (NH4)2SO4, 2 g/l; casein, 4 g/l; MgSO4, 0.5 g; KCl, 0.5 g; microelement salt solution, 10 ml; inoculum size, 1×107 spores per 100 ml medium; initial medium pH, 6.0. Under these conditions, the highest total acid phosphatase activity was 3.05 U/ml in 4 days at 27 °C and 160 rpm. Synthesis of the acid phosphatase was repressed by 0.01% inorganic phosphate in culture medium. The spectrum of isoenzymes produced byM. anisopliae varied depending on the phosphorus source employed in the culture. A specific isoform with pI 9.45 was induced by casein, and another isoform of pI 8.21 was induced by phytic acid and disodium phenyl phosphate.  相似文献   

11.
12.
Humicola lutea 120-5 spores were entrapped in polyurethane sponge cubes and were cultivated inside the carrier to form an immobilized mycelium further used for production of acid proteinases in batch mode. A carrier—spore suspension ratio of 10:0.5 (wt) should be used to obtain optimal results. The polyurethane sponge-immobilized mycelium could be applied repeatedly, the enzyme activity secreted during the first 10 cycles being about the same as that produced by free cells. The advantages of immobilizing fungal cells by germinating conidia entrapped inside the supporting material are discussed.  相似文献   

13.
The mosquito-parasitizing fungus Lagenidium giganteum secreted a soluble acid phosphatase and beta-D-glucosidase into the growth medium. The acid phosphatase was isolated and purified to single component, and some of its physicochemical properties were determined. The enzyme exhibited a pH optimum of 5.6 in phthalate buffer with p-nitrophenyl phosphate and was temperature-inactivated at 55 degrees C. Enzyme activity seems to be limited to phenyl-phosphate substrates. A molecular weight of 42,800 was found and the amino acid content was also determined. A Km for p-nitrophenyl phosphate of 1.6 x 10(-7) M was found. The possible involvement of the enzyme in the infective process was discussed.  相似文献   

14.
The optimal parameters for the cultivation in 10-l fermenters of a mutant strain Humicola lutea 120-5 were established:temperature 30°C, inoculum size 6%, inoculum age 24 h, aeration rate 0,6 vol/vol · min, medium agitation 620 rpm and cultivation time 72 h. A maximal proteolytic activity of 2000 µg tyrosine liberated from 2%casein ml?1 culture filtrate min?1 at pH 3.0 and 40°C was obtained under the fixed conditions. α-Amylase biosynthesis during the cultivation of H. lutea 120-5 was observed but it was insignificant to the 72nd h. It is demonstrated that starch can be used as alternative to glucose carbon source. It is proved that the mutant strain H.lutea 120-5 produced two acid proteinases.  相似文献   

15.
Under phosphate-deficient conditions, B. intermedius, B. pumilus, and B. thuringiensis secrete phosphohydrolases, including phosphomono-, phosphodiesterases, and guanyl-specific ribonucleases which cleave RNA molecules to nucleoside-3'-phosphatases. The enzymes are synthesized by phosphate-starved vegetative cells, which is not associated with sporulation. Using B. subtilis strains with mutation in the regulatory protein genes phoP and phoR, it was shown that these proteins regulate expression of B. intermedius, B. pumilus, and B. thuringiensis ribonuclease genes in B. subtilis cells. Genes of heterologous RNAses were activated in recombinant B. subtilis strains simultaneously with its own PHO regulon genes. Presumably a regulatory system homologous to B. subtilis two-component PhoP-PhoR signal transduction system functions in other representatives of the Bacillus genus.  相似文献   

16.
Synthesis of colominic acid in Escherichia coli K-235 is strictly regulated by temperature. Evidence for the role of cytidine 5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) synthetase in this regulation was obtained by measuring its level in E. coli grown at 20 and 37°C. No activity was found in E. coli grown at 20°C. CMP-Neu5Ac started to be quickly synthesized when bacteria grown at 20°C were transferred to 37°C and was halted when cells grown at 37°C were transferred to 20°C. These findings suggest that temperature regulates the synthesis of this enzyme and therefore the concentration of CMP-Neu5Ac necessary for the biosynthesis of colominic acid.  相似文献   

17.
18.
The influence of the cultivation conditions on Bacillus pumilus KMM 62 growth and effectiveness of the production of a subtilisin-like serine proteinase were investigated. Enzyme accumulation in the culture fluid reached the maximum value after 32 and 46-48 h of growth; it depends on the composition of the nutrient medium. The ratio of the concentrations of two main components of the medium, peptone and inorganic phosphate, which was optimal for enzyme biosynthesis was determined by multifactor experiments. Ammonium salts, when introduced as an additional nitrogen source, had different effects on the proteinase biosynthesis at different growth stages: they suppress enzyme production at the early stationary growth phase and stimulate the biosynthesis of the enzyme after 46-48 h of growth. Complex organic substrates (albumin, casein, hemoglobin, and gelatin) have a repressive effect on the biosynthesis of the enzyme. The effect of amino acids on culture growth and enzyme biosynthesis during the early and late stationary growth phase is different. Hydrophilic amino acids, glutamine, and glutamic acid exhibit the most pronounced repressive action on biosynthesis. The activity of different regulatory mechanisms for the synthesis of this proteinase is assumed at the early and late stationary stages of growth.  相似文献   

19.
Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5   总被引:3,自引:0,他引:3  
The Raf-MEK-ERK pathway couples growth factor, mitogenic and extracellular matrix signals to cell fate decisions such as growth, proliferation, migration, differentiation and survival. Raf-1 is a direct effector of the Ras GTPase and is the initiating kinase in this signalling cascade. Although Raf-1 activation is well studied, little is known about how Raf-1 is inactivated. Here, we used a proteomic approach to identify molecules that may inactivate Raf-1 signalling. Protein phosphatase 5 (PP5) was identified as an inactivator that associates with Raf-1 on growth factor stimulation and selectively dephosphorylates an essential activating site, Ser 338. The PP5-mediated dephosphorylation of Ser 338 inhibited Raf-1 activity and downstream signalling to MEK, an effect that was prevented by phosphomimetic substitution of Ser 338, or by ablation of PP5 catalytic function. Furthermore, depletion of endogenous PP5 increased cellular phospho-Ser 338 levels. Our results suggest that PP5 is a physiological regulator of Raf-1 signalling pathways.  相似文献   

20.
BHK cells expressing human lysosomal acid phosphatase (LAP) transport LAP to lysosomes as an integral membrane protein. In lysosomes LAP is released from the membrane by proteolytic processing, which involves at least two cleavages at the C terminus of LAP. The first cleavage is catalysed by a thiol proteinase at the outside of the lysosomal membrane and removes the bulk of the cytoplasmic tail of LAP. The second cleavage is catalysed by an aspartyl proteinase inside the lysosomes and releases the luminal part of LAP from the membrane-spanning domain. The first cleavage at the cytoplasmic side of the lysosomal membrane depends on acidification of lysosomes and the second cleavage inside the lysosomes depends on prior processing of the cytoplasmic tail. These results suggest that the cytoplasmic tail controls the conformation of the luminal portion of LAP and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号