共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollegioni L Molla G Sacchi S Rosini E Verga R Pilone MS 《Applied microbiology and biotechnology》2008,78(1):1-16
D-Amino acid oxidase (DAAO) is a biotechnologically relevant enzyme that is used in a variety of applications. DAAO is a flavine
adenine dinucleotide-containing flavoenzyme that catalyzes the oxidative deamination of D-isomer of uncharged aliphatic, aromatic,
and polar amino acids yielding the corresponding imino acid (which hydrolyzes spontaneously to the α-keto acid and ammonia)
and hydrogen peroxide. This enzymatic activity is produced by few bacteria and by most eukaryotic organisms. In the past few
years, DAAO from mammals has been the subject of a large number of investigations, becoming a model for the dehydrogenase-oxidase
class of flavoproteins. However, DAAO from microorganisms show properties that render them more suitable for the biotechnological
applications, such as a high level of protein expression (as native and recombinant protein), a high turnover number, and
a tight binding of the coenzyme. Some important DAAO-producing microorganisms include Trigonopsis variabilis, Rhodotorula gracilis, and Fusarium solani. The aim of this paper is to provide an overview of the main biotechnological applications of DAAO (ranging from biocatalysis
to convert cephalosporin C into 7-amino cephalosporanic acid to gene therapy for tumor treatment) and to illustrate the advantages
of using the microbial DAAOs, employing both the native and the improved DAAO variants obtained by enzyme engineering.
相似文献
2.
D-Amino acid oxidase (DAAO) is a well-known flavoenzyme that catalyzes the oxygen-dependent oxidative deamination of amino acid D-isomers with absolute stereospecificity, which results in α-keto acids, ammonia and hydrogen peroxide. Recently, the extraordinary functional plasticity of DAAO has become evident; in turn, boosting research on this flavoprotein. Protein engineering has allowed for a redesign of DAAO substrate specificity, oxygen affinity, cofactor binding, stability, and oligomeric state. We review recent developments in utilizing DAAO, including as a biocatalyst for resolving racemic amino acid mixtures, as a tool for biosensing, and as a new mechanism of herbicide resistance. Perspectives for future biotechnological applications of this oxidative biocatalyst are also outlined. 相似文献
3.
4.
G. Dodt D. Kim S. Reimann K. McCabe Stephen J. Gould S. J. Mihalik 《Cell biochemistry and biophysics》2000,32(1-3):313-316
L-Pipecolic acid oxidase activity is deficient in patients with peroxisome biogenesis disorders (PBDs). Because its role, if any, in these disorders is unknown, the authors cloned the human gene to order to further study its functions. BLAST search of the translated sequence showed greatest homology to Bacillus sp. NS-129 monomeric sarcosine oxidase. The purified enzyme could use either L-pipecolic acid or sarcosine as a substrate. No homology was found to the peroxisomal D-amino acid oxidases. A further comparison of L-pipecolic acid oxidase to the two D-amino acid oxidases in peroxisomes showed that the proteins differed in many ways. First, both D-amino acid oxidase and L-pipecolic acid oxidase showed no enzyme activity in liver from Zell-weger syndrome patients; D-aspartate oxidase activity was unchanged from control levels. Although all were targeted to peroxisomes, their targeting signals differed. No L-pipecolic acid oxidase was found in brain or other tissues outside of liver and kidney. The D-amino acid oxidases were similarly and more widely distributed. Finally, although D-amino acid degradation is limited to peroxisomes in mammals, L-pipecolic acid can be oxidized in either mitochondria or peroxisomes, or both. 相似文献
5.
Sarower MG Matsui T Abe H 《Journal of experimental zoology. Part A, Comparative experimental biology》2003,295(2):151-159
The distributions of D-amino acid oxidase (D-AAO, EC 1.4.3.3) and D-aspartate oxidase (D-AspO, EC 1.4.3.1) activities were examined on several tissues of various fish species. Both enzyme activities were commonly high in kidney and liver and low in intestine with some exceptions. After oral administration of D-alanine at 5 micromol /g body weight(-1)day(-1) to carp for 30 days, D-AAO activity increased by about 8-, 3-, and 1.5-fold in intestine, hepatopancreas, and kidney, respectively, whereas no increase was found in brain. In contrast, oral administration of D-glutamate or D-aspartate did not show any increase of D-AspO activity in any tissues. D-AAO and D-AspO of common carp kidney and hepatopancreas were subcellularly localized in peroxisomes, as clarified in mammals. D-proline was the best substrate for D-AAO in rainbow trout kidney, common carp kidney, and hepatopancreas, followed by D-alanine and D-phenylalanine. N-methyl-D-aspartate was the best substrate for D-AspO in rainbow trout kidney and common carp hepatopancreas. The optimal pH for D-AAO in rainbow trout kidney was broad, from 7.4 to 8.2, and that for D-AspO was around 10. D-AAO was inhibited by benzoate known as D-AAO inhibitor and D-AspO was strongly inhibited by meso-tartarate as D-AspO inhibitor. From these results, at least D-AAO in fish is considered to work as a metabolizing agent of exogenous and endogenous free D-alanine that is abundant in aquatic invertebrates such as crustaceans and bivalve mollusks, which are potential food sources of these fishes. 相似文献
6.
M Katagiri H Tojo K Horiike T Yamano 《Comparative biochemistry and physiology. B, Comparative biochemistry》1991,99(2):345-350
1. By means of an enzyme immunoassay, the contents of D-amino acid oxidase (DAO) were determined in kidney, liver, cerebellum and lung of hog, but the oxidase was not detectable in heart or cerebrum. 2. The oxidases in kidney, liver and cerebellum of hog were indistinguishable as regards immunoreactivity toward anti-hog kidney DAO antibody, specific activity and molecular weight. 3. The oxidases in rat and dog kidneys immunochemically cross-reacted with anti-hog DAO antibody. 4. The overall structure of the hog oxidase was more similar to that of the dog enzyme than that of the rat, while the structure around the catalytic site of the hog oxidase was more similar to that of the rat oxidase than that of the dog enzyme. 5. On immunoblot analysis, two forms of the oxidase were detected in extracts of hog, rat and dog kidneys. 相似文献
7.
By the isolation of mutants that were unable to grow on L-hydroxyproline or DL-valine, it has been possible to demonstrate the presence of two different types of D-amino acid oxidase activities inPseudomonas aeruginosa PAO. One was the D-amino acid dehydrogenase, probably involved in the oxidation of a number of D-amino acids such as D-alanine, D-phenylalanine and D-valine. The other was the inducible oxidase, specific to the oxidation of allohydroxy-D-proline formed from L-hydroxyproline during its oxidation. Thus, it has been possible to delink the involvement of the general D-amino acid dehydrogenase in the oxidative breakdown of allohydroxy-Dsproline. 相似文献
8.
Saitoh Y Katane M Kawata T Maeda K Sekine M Furuchi T Kobuna H Sakamoto T Inoue T Arai H Nakagawa Y Homma H 《Molecular and cellular biology》2012,32(10):1967-1983
Recent investigations have shown that a variety of D-amino acids are present in living organisms and that they possibly play important roles in physiological functions in the body. D-Amino acid oxidase (DAO) and D-aspartate oxidase (DDO) are degradative enzymes stereospecific for D-amino acids. They have been identified in various organisms, including mammals and the nematode Caenorhabditis elegans, although the significance of these enzymes and the relevant functions of D-amino acids remain to be elucidated. In this study, we investigated the spatiotemporal localization of C. elegans DAO and DDOs (DDO-1, DDO-2, and DDO-3) and measured the levels of several D- and L-amino acids in wild-type C. elegans and four mutants in which each gene for DAO and the DDOs was partially deleted and thereby inactivated. Furthermore, several phenotypes of these mutant strains were characterized. The results reported in this study indicate that C. elegans DAO and DDOs are involved in egg-laying events and the early development of C. elegans. In particular, DDOs appear to play important roles in the development and maturation of germ cells. This work provides novel and useful insights into the physiological functions of these enzymes and D-amino acids in multicellular organisms. 相似文献
9.
10.
Nitromethane. A novel substrate for D-amino acid oxidase 总被引:3,自引:0,他引:3
11.
12.
The formation of an initial enzyme-substrate complex of D-amino acid oxidase (D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3) and its substrate, D-alpha-aminobutyric acid, was studied kinetically at lower temperature and pH than their optima. The time course of the absorbance change at 516 nm in an anaerobic reaction was not exponential, but biphasic. The ratio of the rapidly reacting component to the slowly reacting one was decreased upon lowering of the temperature. The reaction rate of the rapidly reacting component depended on substrate concentration and gave a linear Arrhenius plot in the temperature range from -10 to +15 degrees C. The reaction rate of the slowly reacting component also depended on both substrate concentration and temperature. The rapidly reacting and slowly reacting components could be assigned to the substrate binding of the dimer and monomer, respectively, of this enzyme. 相似文献
13.
Linoleic acid (18:2) is found in a large variety of plant oils but to date there is limited knowledge about the substrate selectivity of acyltransferases required for its incorporation into storage triacylglycerols. We have compared the incorporation of oleoyl (18:1) and linoleoyl (18:2) acyl-CoAs onto lysophosphatidic acid acceptors by sub-cellular fractions prepared from a variety of plant and microbial species. Our assays demonstrated: (1). All lysophosphatidic acid acyltransferase (LPA-AT) enzymes tested incorporated 18:2 acyl groups when presented with an equimolar mix of 18:1 and 18:2 acyl-CoA substrates. The ratio of 18:1 to 18:2 incorporation into phosphatidic acid varied between 0.4 and 1.4, indicating low selectivity between these substrates. (2). The presence of either stearoyl (18:0) or oleoyl (18:1) groups at the sn-1 position of lysophosphatidic acid did not affect the selectivity of incorporation of 18:1 or 18:2 into the sn-2 position of phosphatidic acid. (3). All LPA-AT enzymes tested incorporated the saturated palmitoyl (16:0) acyl group from equimolar mixtures of 16:0- and 18:1-CoA. The ratios of 18:1 to 16:0 incorporation are generally much higher than those of 18:1 to 18:2 incorporation, varying between 2.1 and 8.6. (4). The LPA-AT from oil palm kernel is an exception as 18:1 and 16:0 are utilised at comparable rates. These results show that, in the majority of species examined, there is no correlation between the final sn-2 composition of oil or membrane lipids and the ability of an LPA-AT to use 18:2 as a substrate in in vitro assays. 相似文献
14.
The acetylenic substrate, D-2-amino-4-pentynoic acid (D-propargylglycine), was oxidatively deaminated by hog kidney D-amino acid oxidase[EC 1.4.3.3], with accompanying inactivation of the enzyme. The flavin which was extracted by hot methanol from the inactivated enzyme was identical with authentic FAD by thin-layer chromatography and circular dichroism. The excitation spectrum of emission at 520 nm of the released flavin was very similar to the absorption spectrum of oxidized FAD. The released flavin was reduced by potassium borohydride. The apoenzyme prepared after propargylglycine treatment did not show restored D-amino acid oxidase activity on adding exogenous FAD. The absorption spectrum of this inactivated apoenzyme showed absorption peaks at 279 and 317 nm, and a shoulder at about 290 nm. These results strongly indicate that the inactivation reaction is a dynamic affinity labeling with D-propargylglycine which produces irreversible inactivation of the enzyme by a covalent modification of an amino acid residue at the active site. 相似文献
15.
Ullah A Souza TA Abrego JR Betzel C Murakami MT Arni RK 《Biochemical and biophysical research communications》2012,421(1):124-128
l-Amino acid oxidases (LAAOs) are flavoenzymes that catalytically deaminate l-amino acids to corresponding α-keto acids with the concomitant production of ammonia (NH3) and hydrogen peroxide (H2O2). Particularly, snake venom LAAOs have been attracted much attention due to their diverse clinical and biological effects, interfering on human coagulation factors and being cytotoxic against some pathogenic bacteria and Leishmania ssp. In this work, a new LAAO from Bothrops jararacussu venom (BjsuLAAO) was purified, functionally characterized and its structure determined by X-ray crystallography at 3.1 Å resolution. BjsuLAAO showed high catalytic specificity for aromatic and aliphatic large side-chain amino acids. Comparative structural analysis with prokaryotic LAAOs, which exhibit low specificity, indicates the importance of the active-site volume in modulating enzyme selectivity. Surprisingly, the flavin adenine dinucleotide (FAD) cofactor was found in a different orientation canonically described for both prokaryotic and eukaryotic LAAOs. In this new conformational state, the adenosyl group is flipped towards the 62–71 loop, being stabilized by several hydrogen-bond interactions, which is equally stable to the classical binding mode. 相似文献
16.
Liuyu Wang Heng Tang Hongli Zhu Yaping Xue Yuguo Zheng 《Biotechnology and bioengineering》2023,120(12):3557-3569
D -Amino acid oxidase (DAAO) selectively catalyzes the oxidative deamination of D -amino acids, making it one of the most promising routes for synthesizing optically pure L -amino acids, including L -phosphinothricin ( L -PPT), a chiral herbicide with significant market potential. However, the native DAAOs that have been reported have low activity against unnatural acid substrate D -PPT. Herein, we designed and screened a DAAO from Rhodotorula taiwanensis (RtwDAAO), and improved its catalytic potential toward D -PPT through protein engineering. A semirational design approach was employed to create a mutation library based on the tunnel-pocket engineering. After three rounds of iterative saturation mutagenesis, the optimal variant M3rd-SHVG was obtained, exhibiting a >2000-fold increase in relative activity. The kinetic parameters showed that M3rd-SHVG improved the substrate binding affinity and turnover number. This is the optimal parameter reported so far. Further, molecular dynamics simulation revealed that the M3rd-SHVG reshapes the tunnel-pocket and corrects the direction of enzyme–substrate binding, allowing efficiently catalyze unnatural substrates. Our strategy demonstrates that the redesign of tunnel-pockets is effective in improving the activity and kinetic efficiency of DAAO, which provides a valuable reference for enzymatic catalysis. With the M3rd-SHVG as biocatalyst, 500 mM D, L -PPT was completely converted and the yield reached 98%. The results laid the foundation for further industrial production. 相似文献
17.
18.
Spectroscopic demonstration of an initial stage of the complex of D-amino acid oxidase and its substrate D-alpha-aminobutyric acid 总被引:1,自引:0,他引:1
D-Amino acid oxidase [D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3] was anaerobically mixed with its substrate D-α-aminobutyric acid at ?10°C and paH1 7 which were apart from their maxima for the enzymatic reaction. By an ordinary self-recording spectrophotometer, the absorption spectrum of an initial stage of the complex could be observed. The spectrum was in principle similar to that of the complex of this enzyme with benzoate, the enzyme-substrate complex model. The spectroscopic observation revealed that this species is in an equilibrium with the purple intermediate, a strong charge transfer complex between the enzyme and its substrate neutral D-amino acid. 相似文献
19.
We investigated the mechanism of recognition and activation of substrate by D-amino acid oxidase (DAO) by thermodynamical and spectrophotometric methods using zwitterionic ligands [N-methylisonicotinate (NMIN), trigonelline, and homarine] and monoanionic ligands as model compounds of the substrate and the product. In terms of the charge within the substrate D-amino acid, monoanionic (e.g., benzoate), zwitterionic (e.g., NMIN), and dianionic (e.g., terephthalate) ligands are thought to be good models for neutral, basic, and acidic amino acids, respectively, because when a substrate binds to DAO, as previously reported, the a-ammonium group (-NH(3)(+)) probably loses a proton to become neutral (-NH(2)) before the oxidation. Zwitterionic ligands can also be good model compounds of product in the purple complex (the complex of reduced DAO with the product imino acid), because the imino nitrogen of the imino acid is in a protonated cationic form. We also discuss electrostatic interaction, steric effect, and charge-transfer interaction as factors which affect the affinity of substrate/ligand for DAO. Monoanionic ligands have high affinity for neutral forms of oxidized and semiquinoid DAO, while zwitterionic ligands have high affinity for anionic forms of oxidized, semiquinoid, and reduced DAO; this difference was explained by the electrostatic interaction in the active site. The low affinity of homarine (N-methylpicolinate) for oxidized DAO, as in the case of o-methylbenzoate, is due to steric hindrance: one of the ortho carbons of benzoate is near the phenol carbons of Tyr228 and the other ortho carbon is near the carbonyl oxygen of Gly313. The correlation of the affinity of meta- and para-substituted benzoates for oxidized DAO with their Hammet's s values are explained by the HOMO-LUMO interaction between the phenol group of Tyr224 and the benzene ring of benzoate derivative. The pK(a) of neutral flavin [N(3)-H of oxidized flavin, N(5)-H of semiquinoid flavin, and N(1)-H of reduced flavin] decreases by its binding to the apoenzyme. The magnitude of the decrement is oxidized flavin < semiquinoid flavin < reduced flavin. The largest factor in the substantially low pK(a) of reduced flavin in DAO is probably the steric hindrance between the hydrogen atom of H-N(1)(flavin) and the hydrogen atom of H-N of Gly315, which becomes significant when a hydrogen is bound to N(1) of flavin. 相似文献
20.
Noriyuki Doukyu 《Applied microbiology and biotechnology》2009,83(5):825-837
Microbial cholesterol oxidase is an enzyme of great commercial value, widely employed by laboratories routinely devoted to the determination of cholesterol concentrations in serum, other clinical samples, and food. In addition, the enzyme has potential applications as a biocatalyst which can be used as an insecticide and for the bioconversion of a number of sterols and non-steroidal alcohols. The enzyme has several biological roles, which are implicated in the cholesterol metabolism, the bacterial pathogenesis, and the biosynthesis of macrolide antifungal antibiotics. Cholesterol oxidase has been reported from a variety of microorganisms, mostly from actinomycetes. We recently reported cholesterol oxidases from gram-negative bacteria such as Burkholderia and Chromobacterium. These enzymes possess thermal, detergent, and organic solvent tolerance. There are two forms of cholesterol oxidase, one containing a flavin adenine dinucleotide cofactor non-covalently bound to the enzyme (class I) and the other containing the cofactor covalently linked to the enzyme (class II). These two enzymes have no significant sequence homology. The phylogenetic tree analyses show that both class I and class II enzymes can be further divided into at least two groups. 相似文献