首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have generated embryonic stem (ES) cells and transgenic mice carrying a tau-tagged green fluorescent protein (GFP) transgene under the control of a powerful promoter active in all cell types including those of the central nervous system. GFP requires no substrate and can be detected in fixed or living cells so is an attractive genetic marker. Tau-tagged GFP labels subcellular structures, including axons and the mitotic machinery, by binding the GFP to microtubules. This allows cell morphology to be visualized in exquisite detail. We test the application of cells derived from these mice in several types of cell-mixing experiments and demonstrate that the morphology of tau-GFP-expressing cells can be readily visualized after they have integrated into unlabeled host cells or tissues. We anticipate that these ES cells and transgenic mice will prove a novel and powerful tool for a wide variety of applications including the development of neural transplantation technologies in animal models and fundamental research into axon pathfinding mechanisms. A major advantage of the tau-GFP label is that it can be detected in living cells and labeled cells and their processes can be identified and subjected to a variety of manipulations such as electrophysiological cell recording.  相似文献   

2.
3.
The extent to which extrahepatic cells participate in liver regeneration following transplantation is not known. Either full-size or reduced-size livers from wild-type mice were implanted into green fluorescent protein-positive (GFP(+)) transgenic recipient mice to determine whether regenerated liver contained host-derived GFP(+) hepatic cells. After reduced-size liver transplantation, GFP(+) cells were localized to the portal zone of the liver lobule. Interestingly, GFP(+) cells stained for CD117, a marker for progenitor cells, beginning 2 days after transplantation. A significant number of GFP(+) CD117(+) cells were identified in donor livers after 28 days. GFP(+) cells comprised nearly 9% of the donor liver 28 days after reduced-size liver transplant. Moreover, GFP(+) cells also expressed the hepatic progenitor cell marker A6 and novel marker hepatic-specific antigen (HSA), as well as stem cell antigen-1 (Sca-1). Interestingly, some GFP(-) cells also were stained for CD117 and A6, suggesting that both extrahepatic and intrahepatic stem cells were present and may have contributed to the regenerative response under these conditions. Reduced-size liver transplantation using GFP(+) transgenic mice supports the hypothesis that recipient-derived progenitor cells are present and may contribute to liver regeneration following transplantation.  相似文献   

4.
转录因子OCT4在维持和调控胚胎干细胞的多能性中发挥着重要的作用。Oct4基因启动子驱动标志蛋白的表达对研究胚胎干细胞多能性和建立iPs细胞有重要意义。由于GFP在慢病毒转染过程中常用作转染标记,计划构建兔Oct4基因启动子(rOct4)驱动红色荧光蛋白表达的载体,这将有利于兔ES细胞和iPS细胞制备的研究。通过PCR方法扩增rOct4,构建了rOct4驱动RFP基因的表达载体rOct4-RFP。经转染小鼠ES细胞验证正确后,将rOct4-RFP质粒转染兔成纤维细胞系获得rOct4-RFP成纤维细胞系。经过酶切和测序验证,证明rOct4-RFP构建成功,而且能够在小鼠Es细胞系E14中表达细胞红色荧光蛋白,并受细胞分化状态的调控。通过脂质体介导的基因转移、抗性筛选和PCR鉴定建立了rOct4-RFP转基因成纤维细胞系。  相似文献   

5.
The cell-of-origin has a great impact on the types of tumors that develop and the stem/progenitor cells have long been considered main targets of malignant transformation. The SV40 (SV40—Simian Virus 40) large T and small t antigens (T/t), have been targeted to multiple-differentiated cellular compartments in transgenic mice. In most of these studies, transgenic animals develop tumors without apparent defects in animal development. In this study, we used the bovine keratin 5 (BK5) promoter to target the T/t antigens to stem/progenitor cell-containing cytokeratin 5 (CK5) cellular compartment. A transgene construct, BK5-T/t, was made and microinjected into the male pronucleus of FVB/N mouse oocytes. After implanting ∼1700 embryos, only 7 transgenics were obtained, including 4 embryos (E9.5, E13, E15, and E20) and 3 postnatal animals, which died at P1, P2, and P18, respectively. Immunohistological analysis revealed aberrant differentiation and prominent hyperplasia in several transgenic CK5 tissues, especially the upper digestive organs (tongue, oral mucosa, esophagus, and forestomach) and epidermis, the latter of which also showed focal dysplasia. Altogether, these results indicate that constitutive expression of the T/t antigens in CK5 cellular compartment results in abnormal epithelial differentiation and leads to embryonic/perinatal animal lethality.  相似文献   

6.
RNA interference (RNAi) is a powerful approach to phenocopy mutations in many organisms. Gold standard conventional knock‐out mouse technology is labor‐ and time‐intensive; however, off‐target effects may confound transgenic RNAi approaches. Here, we describe a rapid method for conditional and reversible gene silencing in RNAi transgenic mouse models and embryonic stem (ES) cells. RUSH and CRUSH RNAi vectors were designed for reversible or conditional knockdown, respectively, demonstrated using targeted replacement in an engineered ROSA26lacZ ES cell line and wildtype V6.5 ES cells. RUSH was validated by reversible knockdown of Dnmt1 in vitro. Conditional mouse model production using CRUSH was expedited by deriving ES cell lines from Cre transgenic mouse strains (nestin, cTnnT, and Isl1) and generating all‐ES G0 transgenic founders by tetraploid complementation. A control CRUSHGFP RNAi mouse strain showed quantitative knockdown of GFP fluorescence as observed in compound CRUSHGFP, Ds‐Red Cre‐reporter transgenic mice, and confirmed by Western blotting. The capability to turn RUSH and CRUSH alleles off or on using Cre recombinase enables this method to rapidly address questions of tissue‐specificity and cell autonomy of gene function in development. genesis 52:39–48, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The BCR/ABL oncogene causes chronic myelogenous leukemia (CML), a myeloproliferative disorder characterized by clonal expansion of hematopoietic progenitor cells and granulocyte lineage cells. The SH2-containing inositol-5-phosphatase SHIP is a 145-kDa protein which has been shown to regulate hematopoiesis in mice. Targeted disruption of the murine SHIP gene results in a myeloproliferative syndrome characterized by a dramatic increase in numbers of granulocyte-macrophage progenitor cells in the marrow and spleen. Also, hematopoietic progenitor cells from SHIP(-/-) mice are hyperresponsive to certain hematopoietic growth factors, a phenotype very similar to the effects of BCR/ABL in murine cells. In a series of BCR/ABL-transformed hematopoietic cell lines, Philadelphia chromosome (Ph)-positive cell lines, and primary cells from patients with CML, the expression of SHIP was found to be absent or substantially reduced compared to untransformed cell lines or leukemia cells lacking BCR/ABL. Ba/F3 cells in which expression of BCR/ABL was under the control of a tetracycline-inducible promoter showed rapid loss of p145 SHIP, coincident with induction of BCR/ABL expression. Also, an ABL-specific tyrosine kinase inhibitor, CGP57148B (STI571), rapidly caused reexpression of SHIP, indicating that BCR/ABL directly, but reversibly, regulates the expression of SHIP protein. The estimated half-life of SHIP protein was reduced from 18 h to less than 3 h. However, SHIP mRNA also decreased in response to BCR/ABL, suggesting that SHIP protein levels could be affected by more than one mechanism. Reexpression of SHIP in BCR/ABL-transformed Ba/F3 cells altered the biological behavior of cells in culture. The reduction of SHIP due to BCR/ABL is likely to directly contribute to the pathogenesis of CML.  相似文献   

8.
Green fluorescent protein (GFP) expression was evaluated in tissues of different transgenic rodents--Sprague-Dawley (SD) rat strain [SD-Tg(GFP)Bal], W rat strain [Wistar-TgN(CAG-GFP)184ys], and M mouse strain [Tg(GFPU)5Nagy/J]--by direct fluorescence of native GFP expression and by immunohistochemistry. The constitutively expressing GFP transgenic strains showed tissue-specific differences in GFP expression, and GFP immunohistochemistry amplified the fluorescent signal. The fluorescence of stem/progenitor cells cultured as neurospheres from the ependymal region of the adult spinal cord from the GFP SD and W rat strains was assessed in vitro. After transplantation of the cells into wild-type spinal cord, the ability to track the grafted cells was evaluated in vivo. Cultured stem/progenitor cells from the SD strain required GFP immunostaining to be visualized. Likewise, after transplantation of SD cells into the spinal cord, immunohistochemical amplification of the GFP signal was required for detection. In contrast, GFP expression of stem/progenitor cells generated from the W strain was readily detected by direct fluorescence both in vitro and in vivo without the need for immunohistochemical amplification. The cultured stem/progenitor cells transplanted into the spinal cord survived for at least 49 days after transplantation, and continued to express GFP, demonstrating stable expression of the GFP transgene in vivo.  相似文献   

9.
The murine stem cell virus (MSCV) promoter exhibits activity in mouse hematopoietic cells and embryonic stem cells. We generated transgenic mice that expressed enhanced green fluorescent protein (GFP) under the control of the MSCV promoter. We obtained 12 transgenic founder mice through 2 independent experiments and found that the bodies of 9 of the founder neonates emitted different levels of GFP fluorescence. Flow cytometric analysis of circulating leukocytes revealed that the frequency of GFP-labeled leukocytes among white blood cells ranged from 1.6% to 47.5% across the 12 transgenic mice. The bodies of 9 founder transgenic mice showed various levels of GFP expression. GFP fluorescence was consistently observed in the cerebellum, with faint or almost no fluorescence in other brain regions. In the cerebellum, 10 founders exhibited GFP expression in Purkinje cells at frequencies of 3% to 76%. Of these, 4 mice showed Purkinje cell-specific expression, while 4 and 2 mice expressed GFP in the Bergmann glia and endothelial cells, respectively. The intensity of the GFP fluorescence in the body was relative to the proportion of GFP-positive leukocytes. Moreover, the frequency of the GFP-expressing leukocytes was significantly correlated with the frequency of GFP-expressing Purkinje cells. These results suggest that the MSCV promoter is useful for preferentially expressing a transgene in Purkinje cells. In addition, the proportion of transduced leukocytes in the peripheral circulation reflects the expression level of the transgene in Purkinje cells, which can be used as a way to monitor transgene expression properties in the cerebellum without invasive techniques.  相似文献   

10.
11.
Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders.  相似文献   

12.
Green fluorescent protein (GFP) gene was transfected and expressed in murine embryonic stem (ES) cells under the control of the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter. Stably transfected cells were characterized by immunohistochemistry and by fluorescence microscopy. Cells containing GFP were differentiated to Type I and Type II astrocytes after induction by all-trans retinoic acid. Differentiated cells were expressed GFP and visualized by fluorescence microscopy. Differentiated cells expressed GFP were correlated with the expression of GFAP and morphological change. It demonstrates that the cell line expressed GFP can be used to trace the morphological changes of astrocytes during differentiation, and further for the isolation of astrocytes from the mixed cells differentiated from ES cell.  相似文献   

13.
We report the first endothelial lineage-specific transgenic mouse allowing live imaging at subcellular resolution. We generated an H2B-EYFP fusion protein which can be used for fluorescent labeling of nucleosomes and used it to specifically label endothelial cells in mice and in differentiating embryonic stem (ES) cells. A fusion cDNA encoding a human histone H2B tagged at its C-terminus with enhanced yellow fluorescent protein (EYFP) was expressed under the control of an Flk1 promoter and intronic enhancer. The Flk1::H2B-EYFP transgenic mice are viable and high levels of chromatin-localized reporter expression are maintained in endothelial cells of developing embryos and in adult animals upon breeding. The onset of fluorescence in differentiating ES cells and in embryos corresponds with the beginning of endothelial cell specification. These transgenic lines permit real-time imaging in normal and pathological vasculogenesis and angiogenesis to track individual cells and mitotic events at a level of detail that is unprecedented in the mouse.  相似文献   

14.
Although it is known that leukemia inhibitory factor (LIF) supports the derivation and expansion of murine embryonic stem (ES) cells, it is unclear whether this is due to inhibitory effects of LIF on ES cell differentiation or stimulatory effects on ES cell survival and proliferation. Using an ES cell line transgenic for green fluorescent protein (GFP) expression under control of the Oct4 promoter, we were able to simultaneously track the responses of live Oct4-GFP-positive (ES) and -negative (differentiated) fractions to LIF, serum, and other growth factors. Our findings show that, in addition to inhibiting differentiation of undifferentiated cells, the administration of LIF resulted in a distinct dose-dependent survival and proliferation advantage, thus enabling the long-term propagation of undifferentiated cells. Competitive responses from the differentiated cell fraction could only be elicited upon addition of serum, fibroblast growth factor-4 (FGF-4), or insulin-like growth factor-1 (IGF-1). The growth factors did not induce additional differentiation of ES cells, but rather they significantly improved the proliferation of already differentiated cells. Our analyses show that, by adjusting culture conditions, including the type and amount of growth factors or cytokines present, the frequency of media exchange, and the presence or absence of serum, we could selectively and specifically alter the survival, proliferation, and differentiation dynamics of the two subpopulations, and thus effectively control population outputs. Our findings therefore have important applications in engineering stem cell culture systems to predictably generate desired stem cells or their derivatives for various regenerative therapies.  相似文献   

15.
Li ER  Watt FM 《FEBS letters》2005,579(28):6479-6485
We investigated topoisomerase II alpha promoter activity in epithelia. In confluent human keratinocytes the promoter (-557 to+90 bp) was upregulated by oncogenic Ras. In transgenic mice expressing GFP via the promoter, GFP expression in undamaged epidermis was confined to growing hair follicles. GFP was also expressed in intestinal crypts. GFP expression was upregulated in epidermis following wounding or phorbol ester treatment. In each situation GFP expression correlated with high endogenous topoisomerase II alpha expression and high proliferation. The mice therefore provide a useful model for non-invasive imaging of regions of high proliferation in normal or damaged epidermis.  相似文献   

16.
The murine embryonal stem (ES) cell virus (MESV) can express transgenes from the long terminal repeat (LTR) promoter/enhancer in undifferentiated ES cells, but expression is turned off upon differentiation to embryoid bodies (EBs) and hematopoietic cells in vitro. We examined whether a human immunodeficiency virus type 1-based lentivirus vector pseudotyped with the vesicular stomatitis virus G protein (VSV-G) could transduce ES cells efficiently and express the green fluorescent protein (GFP) transgene from an internal phosphoglycerate kinase (PGK) promoter throughout development to hematopoietic cells in vitro. An oncoretrovirus vector containing the MESV LTR and the GFP gene was used for comparison. Fluorescence-activated cell sorting analysis of transduced CCE ES cells showed 99.8 and 86.7% GPF-expressing ES cells in the VSV-G-pseudotyped lentivirus (multiplicity of infection [MOI] = 59)- and oncoretrovirus (MOI = 590)-transduced cells, respectively. Therefore, VSV-G pseudotyping of lentiviral and oncoretrovirus vectors leads to efficient transduction of ES cells. Lentivirus vector integration was verified in the ES cell colonies by Southern blot analysis. When the transduced ES cells were differentiated in vitro, expression from the oncoretrovirus LTR was severely reduced or extinct in day 6 EBs and ES cell-derived hematopoietic colonies. In contrast, many lentivirus-transduced colonies, expressing the GFP gene in the undifferentiated state, continued to express the transgene throughout in vitro development to EBs at day 6, and many continued to express in cells derived from hematopoietic colonies. This experimental system can be used to analyze lentivirus vector design for optimal expression in hematopoietic cells and for gain-of-function experiments during ES cell development in vitro.  相似文献   

17.
AIM:To find a safe source for dopaminergic neurons,we generated neural progenitor cell lines from human embryonic stem cells.METHODS:The human embryonic stem(hES)cell line H9 was used to generate human neural progenitor(HNP)cell lines.The resulting HNP cell lines were differentiated into dopaminergic neurons and analyzed by quantitative real-time polymerase chain reaction and immunofluorescence for the expression of neuronal differentiation markers,including beta-III tubulin(TUJ1)and tyrosine hydroxylase(TH).To assess the risk of teratoma or other tumor formation,HNP cell lines and mouse neuronal progenitor(MNP)cell lines were injected subcutaneously into immunodeficient SCID/beige mice.RESULTS:We developed a fairly simple and fast protocol to obtain HNP cell lines from hES cells.These cell lines,which can be stored in liquid nitrogen for several years,have the potential to differentiate in vitro into dopaminergic neurons.Following day 30 of differentiation culture,the majority of the cells analyzed expressed the neuronal marker TUJ1 and a high proportion of these cells were positive for TH,indicating differentiation into dopaminergic neurons.In contrast to H9 ES cells,the HNP cell lines did not form tumors in immunodeficient SCID/beige mice within 6 mo after subcutaneous injection.Similarly,no tumors developed after injection of MNP cells.Notably,mouse ES cells or neuronal cells directly differentiated from mouse ES cells formed teratomas in more than 90%of the recipients.CONCLUSION:Our findings indicate that neural progenitor cell lines can differentiate into dopaminergic neurons and bear no risk of generating teratomas or other tumors in immunodeficient mice.  相似文献   

18.
19.
20.
The potential use of embryonic stem (ES) cells for cell therapy of diabetes requires improved methods for differentiation and isolation of insulin-producing beta-cells. The signal transduction protein SHB may be involved in both angiogenesis and beta-cell development. Here we show that cells expressing the pancreatic endodermal marker PDX-1 appear in the vicinity of vascular structures in ES cell-derived embryoid bodies (EBs) cultured in vitro. Moreover, overexpression of SHB as well as culture of EBs in presence of the angiogenic growth factors PDGF or VEGF enhanced the expression of PDX-1 and/or insulin mRNA. Finally, expression of GFP under control of the PDX-1 promoter in EBs allowed for the enrichment by FACS of cells expressing PDX-1, C-peptide, and insulin as determined by immunofluorescence. It is concluded that SHB and angiogenic factors promote the development of cells expressing PDX-1 and insulin in EBs and that such cells can be separated by FACS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号