首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Na+/H+ antiporter of Bacillus alcalophilus was studied by measuring 22Na+ efflux from starved, cyanide-inhibited cells which were energized by means of a valinomycin-induced potassium diffusion potential, positive out (delta psi). In the absence of a delta psi, 22Na+ efflux at pH 9.0 was slow and appreciably inhibited by N-ethylmaleimide. Upon imposition of a delta psi, a very rapid rate of 22Na+ efflux occurred. This rapid rate of 22Na+ efflux was competitively inhibited by Li+ and varied directly with the magnitude of the delta psi. Kinetic experiments with B. alcalophilus and alkalophilic Bacillus firmus RAB indicated that the delta psi caused a pronounced increase in the Vmax for 22Na+ efflux. The Km values for Na+ were unaffected by the delta psi. Upon imposition of a delta psi at pH 7.0, a retardation of the slow 22Na+ efflux rate at pH 7.0 was caused by the delta psi. This showed that inactivity of the Na+/H+ antiporter at pH 7.0 was not secondary to a low delta psi generated by respiration at this pH. Indeed, 22Na+ efflux activity appeared to be inhibited by a relatively high internal proton concentration. By contrast, at a constant internal pH, there was little variation in the activity at external pH values from 7.0 to 9.0; at an external pH of 10.0, the rate of 22Na+ efflux declined. This decline at typical pH values for growth may be due to an insufficiency of protons when a diffusion potential rather than respiration is the driving force. Non-alkalophilic mutant strains of B. alcalophilus and B. firmus RAB exhibited a slow rate of 22Na+ efflux which was not enhanced by a delta psi at either pH 7.0 or 9.0.  相似文献   

2.
The utilization of cellulose or cellobiose by Bacteroides succinogenes S85 was severely inhibited at pH values of less than 5.7. Since low pH inhibited the utilization of both cellobiose and cellulose, changes in cellulase activity could not explain the effect. At an extracellular pH of 6.9, the pH gradient (delta pH) across the cell membrane was only 0.07 U. As extracellular pH declined from 6.9 to 5.7, intracellular pH decreased to a smaller extent than extracellular pH and delta pH increased. Below pH 5.7, there was a linear and nearly proportional decrease in intracellular pH. B. succinogenes took up the lipophilic cation tetraphenylphosphonium ion (TPP+) in the presence of cellobiose, and uptake was sensitive to the ionophore valinomycin. As pH was decreased with phosphoric acid, the cells lost TPP+ and electrical potential, delta psi, decreased. From extracellular pH 6.9 to 5.7, the decrease in delta psi was compensated for by an increase in delta pH, and the proton motive force ranged from 152 to 158 mV. At a pH of less than 5.7, there was a large decrease in proton motive force, and this decrease corresponded to the inhibition of cellobiose utilization.  相似文献   

3.
Escherichia coli intracellular pH, membrane potential, and cell growth.   总被引:11,自引:13,他引:11       下载免费PDF全文
We studied the changes in various cell functions during the shift to alkaline extracellular pH in wild-type Escherichia coli and in strain DZ3, a mutant defective in pH homeostasis. A rapid increase in membrane potential (delta psi) was detected in both the wild type and the mutant immediately upon the shift, when both cell types failed to control intracellular pH. Upon reestablishment of intracellular pH - extracellular pH and growth in the wild type, delta psi decreased to a new steady-state value. The electrochemical proton gradient (delta muH+) was similar in magnitude to that observed before the pH shift. In the mutant DZ3, delta psi remained elevated, and even though delta muH+ was higher than in the wild type, growth was impaired. Cessation of growth in the mutant is not a result of cell death. Hence, the mutant affords an interesting system to explore the intracellular-pH-sensitive steps that arrest growth without affecting viability. In addition to delta muH+, we measured respiration rates, protein synthesis, cell viability, induction of beta-galactosidase, DNA synthesis, and cell elongation upon failure of pH homeostasis. Cell division was the only function arrested after the shift in extracellular pH. The cells formed long chains with no increase in colony-forming capacity.  相似文献   

4.
The utilization of cellulose or cellobiose by Bacteroides succinogenes S85 was severely inhibited at pH values of less than 5.7. Since low pH inhibited the utilization of both cellobiose and cellulose, changes in cellulase activity could not explain the effect. At an extracellular pH of 6.9, the pH gradient (delta pH) across the cell membrane was only 0.07 U. As extracellular pH declined from 6.9 to 5.7, intracellular pH decreased to a smaller extent than extracellular pH and delta pH increased. Below pH 5.7, there was a linear and nearly proportional decrease in intracellular pH. B. succinogenes took up the lipophilic cation tetraphenylphosphonium ion (TPP+) in the presence of cellobiose, and uptake was sensitive to the ionophore valinomycin. As pH was decreased with phosphoric acid, the cells lost TPP+ and electrical potential, delta psi, decreased. From extracellular pH 6.9 to 5.7, the decrease in delta psi was compensated for by an increase in delta pH, and the proton motive force ranged from 152 to 158 mV. At a pH of less than 5.7, there was a large decrease in proton motive force, and this decrease corresponded to the inhibition of cellobiose utilization.  相似文献   

5.
The effect of three beta-galactosides on the components membrane potential (delta psi) and pH gradient (delta pH) of protonmotive force and growth of Escherichia coli has been examined. A good correlation between the reduction of the protonmotive force and growth inhibition was observed. Thus some galactosides had little effect on either the protonmotive force or growth while lactose diminished the protonmotive force and caused growth inhibition. This effect of lactose was dependent on the ionic composition of the growth media. In Medium A (77 mM-Na+, 85 mM-K+) lactose diminished delta psi but had no effect on delta pH. Growth inhibition was transient at an external pH 6.0 but complete at pH 7.5. In medium KA (approximately 1 mM-Na+, 162 mM-K+) delta pH was diminished and delta psi was not affected and consequently growth inhibition was complete at pH 6.0. In medium NA (163 mM-Na+, 20 mM-K+) lactose had little effect on delta psi, delta pH or growth. These data support Skulachev's hypothesis of buffering of the protonmotive force by K+ and Na+ gradients.  相似文献   

6.
The effects of imposed proton motive force on the kinetic properties of the alkalophilic Bacillus sp. strain N-6 Na+/H+ antiport system have been studied by looking at the effect of delta psi (membrane potential, interior negative) and/or delta pH (proton gradient, interior alkaline) on Na+ efflux or H+ influx in right-side-out membrane vesicles. Imposed delta psi increased the Na+ efflux rate (V) linearly, and the slope of V versus delta psi was higher at pH 9 than at pH 8. Kinetic experiments indicated that the delta psi caused a pronounced increase in the Vmax for Na+ efflux, whereas the Km values for Na+ were unaffected by the delta psi. As the internal H+ concentration increased, the Na+ efflux reaction was inhibited. This inhibition resulted in an increase in the apparent Km of the Na+ efflux reaction. These results have also been observed in delta pH-driven Na+ efflux experiments. When Na(+)-loaded membrane vesicles were energized by means of a valinomycin-induced inside-negative K+ diffusion potential, the generated acidic-interior pH gradients could be detected by changes in 9-aminoacridine fluorescence. The results of H+ influx experiments showed a good coincidence with those of Na+ efflux. H+ influx was enhanced by an increase of delta psi or internal Na+ concentration and inhibited by high internal H+ concentration. These results are consistent with our previous contentions that the Na+/H+ antiport system of this strain operates electrogenically and plays a central role in pH homeostasis at the alkaline pH range.  相似文献   

7.
Oxygen taxis and proton motive force in Salmonella typhimurium   总被引:16,自引:0,他引:16  
The aerotactic response of Salmonella typhimurium SL3730 has been quantitatively correlated with a change in the proton motive force (delta p) as measured by a flow-dialysis technique. At pH 7.5, the membrane potential (delta psi) in S. typhimurium changed from -162 +/- 13 to -111 +/- 15 mV when cells grown aerobically were made anaerobic, and it returned to the original value when the cells were returned to aerobiosis. The delta pH across the membrane was zero. At pH 5.5, delta psi was -70 mV in aerobiosis and -20 mV in anaerobiosis, and delta pH was -118 and -56 mV for aerobic and anaerobic cells, respectively. A decrease in delta p resulted in increased tumbling, and an increase in delta p resulted in a smooth swimming response at either pH. Inhibition of aerotaxis at pH 7.5 by various concentrations of KCN correlated with a decreased delta p, due to a decreased delta psi in aerobiosis and little change in delta psi in anaerobiosis. At concentrations up to 100 mM, 2,4-dinitrophenol decreased delta psi, but did not inhibit aerotaxis because the difference between delta psi in aerobic and anaerobic cells remained constant. Considered as a whole, the results indicate that aerotaxis in S. typhimurium is mediated by delta p.  相似文献   

8.
The proton electrochemical gradient in Escherichia coli cells.   总被引:55,自引:0,他引:55  
The internal pH of Escherichia coli cells was estimated from the distribution of either 5,5-[14C]dimethyl-2,4-oxazolidinedione or [14C]methylamine. EDTA/valinomycin treatment of cells was employed to estimate delta psi from 86Rb+ distribution concomitant with the delta pH for calculation of delta muH. Respiring intact cells maintained an internal pH more alkaline by 0.63-0.75 unit than that of the milieu at extracellular pH 7, both in growth medium and KCl solutions. The delta pH decreased when respiration was inhibited by anaerobiosis or in the presence of KCN. The delta muH, established by EDTA/valinomycin-treated cells, was constant (122-129 mV) over extracellular potassium concentration of 0.01 mM-1 mM. At the lower potassium concentration delta psi (110-120 mV) was the predominant component, and at the higher concentration delta pH increased to 0.7 units (42 mV). At 150 mM potassium delta muH was reduced to 70 mV mostly due to a delta pH component of 0.89 (53 mV). The interchangeability of the delta muH components is consistent with an electronic proton pump and with potassium serving as a counter ion in the presence of valinomycin. Indeed both parameters of delta muH decreased in the presence of carbonylcyanide p-trifluoromethoxyphenylhydrazone. The highest delta pH of 2 units was observed in the intact cells at pH 6; increasing the extracellular pH decreased the delta pH to 0 at pH 7.65 and to -0.51 at pH 9. A similar pattern of dependence of delta pH on extracellular pH was observed in EDTA/valinomycin-treated cells but the delta psi was almost constant over the whole range of extracellular pH values (6-8) implying electroneutral proton movement. Potassium is specifically required for respiration of EDTA-treated E. coli K12 cells since other monovalent or divalent cations could not replace potassium and valinomycin was not required.  相似文献   

9.
Isolated membrane vesicles from the obligately acidophilic bacterium Bacillus acidocaldarius generated an electrochemical gradient of protons (delta mu- H+) upon energization with ascorbate-phenazine methosulfate at pH 6.0 or 3.0. At pH 6.0, there was little or no transmembrane pH gradient (delta pH), but a transmembrane electrical potential (delta psi) of ca. -77 mV, positive out, was observed. At pH 3.0, a delta pH equivalent to - 100 mV, acid out, and a delta psi of -73 mV, positive out, were observed upon energization. The total magnitude of the delta mu- H+ was higher than that of whole cells at acid pH, but the very large delta pHs and the reversed delta psi s, i.e., inside positive, that are typical of acidophile cells were not observed in the vesicles. The vesicles exhibited energy-dependent accumulation of alpha-aminoisobutyric acid that was inhibited by both nigericin and valinomycin (plus K+) at pH 3.0 but was inhibited little by nigericin at pH 6.0.  相似文献   

10.
Endocytic vesicles possess an electrogenic proton pump, and measurements of ATPase activity suggest that Cl- may stimulate proton pump activity. This study was undertaken to measure the steady-state pH, potential (delta psi), and total proton electrochemical gradients established by the rat liver multivesicular body (MVB) proton pump and to examine the effects of Cl- (0.5-140 mM) on these gradients. Radiolabeled [( 14C] methylamine and 36Cl-) and fluorescent (fluorescein isothiocyanate-conjugated low density lipoproteins) probes were used to assess internal pH (pHi) and delta psi. In the absence of ATP, pHi averaged 7.37 +/- 0.05 (extracellular pH 7.31 +/- 0.02), and delta psi ranged from -32 to -71 mV; but neither pHi nor delta psi varied consistently with [Cl-]. In the presence of ATP, pHi decreased progressively with increasing [Cl-] to a plateau value of about 5.89 at greater than or equal to 25 mM Cl-, and MVB exhibited an interior positive delta psi that was maximal at the lowest Cl- concentration (+65.5 mV) and decreased as medium Cl- increased. The total ATP-dependent proton electrochemical gradient (proton-motive force (delta p] averaged 118.0 +/- 4.3 mV and did not change in any consistent manner as [Cl-] varied almost 300-fold. However, initial rates of MVB acidification increased with increasing [Cl-]. These studies indicate that: (a) in the absence of ATP, isolated MVB exhibited a negative delta psi, probably a Donnan potential; (b) in the presence of ATP and at a [Cl-] similar to that in hepatocyte cytoplasm (25 mM), MVB pHi was 5.89, and delta psi was +9.6 mV; and (c) over the range of [Cl-] tested, the magnitudes of delta pH and delta psi were inversely related, apparently related to Cl- availability, but the ATP-dependent delta p did not vary. Therefore, it is concluded that Cl- increases the initial rate of vesicle acidification in MVB and also affects the relative chemical and electrical contributions of the steady-state proton pump-determined delta p. Cl-, however, does not alter steady-state delta p.  相似文献   

11.
The proton motive force and its electrical and chemical components were determined in Clostridium acetobutylicum, grown in a phosphate-limited chemostat, using [14C]dimethyloxazolidinedione and [14C]benzoic acid as transmembrane pH gradient (delta pH) probes and [14C]triphenylmethylphosphonium as a membrane potential (delta psi) indicator. The cells maintained an internal-alkaline pH gradient of approximately 0.2 at pH 6.5 and 1.5 at pH 4.5. The delta pH was essentially constant between pH 6.5 and 5.5 but increased considerably at lower extracellular pH values down to 4.5. Hence, the intracellular pH fell from 6.7 to 6.0 as the external pH was lowered from 6.5 to 5.5 but did not decrease further when the external pH was decreased to 4.5. The transmembrane electrical potential decreased as the external pH decreased. At pH 6.5, delta psi was approximately -90 mV, whereas no negative delta psi was detectable at pH 4.5. The proton motive force was calculated to be -106 mV at pH 6.5 and -102 mV at pH 4.5. The ability to maintain a high internal pH at a low extracellular pH suggests that C. acetobutylicum has an efficient deacidification mechanism which expresses itself through the production of neutral solvents.  相似文献   

12.
The proton motive force and its electrical and chemical components were determined in Clostridium acetobutylicum, grown in a phosphate-limited chemostat, using [14C]dimethyloxazolidinedione and [14C]benzoic acid as transmembrane pH gradient (delta pH) probes and [14C]triphenylmethylphosphonium as a membrane potential (delta psi) indicator. The cells maintained an internal-alkaline pH gradient of approximately 0.2 at pH 6.5 and 1.5 at pH 4.5. The delta pH was essentially constant between pH 6.5 and 5.5 but increased considerably at lower extracellular pH values down to 4.5. Hence, the intracellular pH fell from 6.7 to 6.0 as the external pH was lowered from 6.5 to 5.5 but did not decrease further when the external pH was decreased to 4.5. The transmembrane electrical potential decreased as the external pH decreased. At pH 6.5, delta psi was approximately -90 mV, whereas no negative delta psi was detectable at pH 4.5. The proton motive force was calculated to be -106 mV at pH 6.5 and -102 mV at pH 4.5. The ability to maintain a high internal pH at a low extracellular pH suggests that C. acetobutylicum has an efficient deacidification mechanism which expresses itself through the production of neutral solvents.  相似文献   

13.
The influence of ammonium and urea on the components of the proton electrochemical potential (delta p) and de novo synthesis of ATP was studied with Bacillus pasteurii ATCC 11859. In washed cells grown at high urea concentrations, a delta p of -56 +/- 29 mV, consisting of a membrane potential (delta psi) of -228 +/- 19 mV and of a transmembrane pH gradient (delta pH) equivalent to 172 +/- 38 mV, was measured. These cells contained only low amounts of potassium, and the addition of ammonium caused an immediate net decrease of both delta psi and delta pH, resulting in a net increase of delta p of about 49 mV and de novo synthesis of ATP. Addition of urea and its subsequent hydrolysis to ammonium by the cytosolic urease also caused an increase of delta p and ATP synthesis; a net initial increase of delta psi, accompanied by a slower decrease of delta pH in this case, was observed. Cells grown at low concentrations of urea contained high amounts of potassium and maintained a delta p of -113 +/- 26 mV, with a delta psi of -228 +/- 22 mV and a delta pH equivalent to 115 +/- 20 mV. Addition of ammonium to such cells resulted in the net decrease of delta psi and delta pH without a net increase in delta p or synthesis of ATP, whereas urea caused an increase of delta p and de novo synthesis of ATP, mainly because of a net increase of delta psi. The data reported in this work suggest that the ATP-generating system is coupled to urea hydrolysis via both an alkalinization of the cytoplasm by the ammonium generated in the urease reaction and a net increase of delta psi that is probably due to an efflux of ammonium ions. Furthermore, the findings of this study show that potassium ions are involved in the regulation of the intracellular pH and that ammonium ions may functionally replace potassium to a certain extent in reducing the membrane potential and alkalinizing the cytoplasm.  相似文献   

14.
The control of cytochrome c oxidase incorporated into proteoliposomes has been investigated as a function of membrane potential (delta psi) and pH gradient (delta pH). The oxidase generates a pH gradient (alkaline inside) and a membrane potential (negative inside) when respiring on external cytochrome c. Low levels of valinomycin collapse delta psi and increase delta pH; the respiration rate decreases. High levels of valinomycin, however, decrease delta pH as valinomycin can also act as a protonophore. Nigericin (in the absence of valinomycin) increases delta psi and collapses delta pH; the respiration rate increases. On a millivolt equivalent basis delta pH is a more effective inhibitor of activity than is delta psi. In the absence of any ionophores the cytochrome oxidase proteoliposomes enter a steady state, in which there are both delta pH and delta psi components of control. Present and previous data suggest that the respiration rate responds in a linear way ("ohmically") to increasing delta pH but in a nonlinear way to delta psi ("non-ohmically"). High levels of both delta psi and delta pH do not completely inhibit turnover (maximal respiratory control values lie between 6 and 10). The controlled steady state involves the electrophoretic entry and electroneutral exit of K+ from the vesicles. A model is presented in which the enzyme responds to both delta pH and delta psi components of the proton-motive force, but is more sensitive to delta pH than to delta psi at an equivalent delta mu H+. The steady state of the proteoliposome system can be represented for any set of permeabilities and enzyme activity levels using the computer simulation programme Stella.  相似文献   

15.
At optimal growth pH (3.0) Thiobacillus acidophilus maintained an internal pH of 5.6 (delta pH of 2.6 units) and a membrane potential (delta psi) of some +73 mV, corresponding to a proton motive force (delta p) of -83 mV. The internal pH remained poised at this value through external pH values of 1 to 5, so that the delta pH increased with decreasing external pH. The positive delta psi increased linearly with delta pH: above a delta pH of 0.6 units, some 60% of the increase in delta pH was compensated for by an opposing increase in delta psi. The highest magnitude of delta pH occurred at an external pH of 1.0, where the cells could not respire. Inhibiting respiration by CN- or azide in cells at optimal pH decreased delta pH by only 0.4 to 0.5 units and caused a corresponding opposite increase in delta psi. Thus, a sizable delta pH could be maintained in the complete absence of respiration. Treatment of cells with thiocyanate to abolish the delta psi resulted in a time-dependent collapse of delta pH, which was augmented by protonophores. We postulate that T. acidophilus possesses unusual resistance to ionic movements. In the presence of a large delta pH (greater than 0.6 pH units), limited diffusion of H+ into the cell is permitted, which generates a positive delta psi because of resistance to compensatory ionic movements. This delta psi, by undergoing fluctuations, regulates the further entry of H+ into the cell in accordance with the metabolic state of the organism. The effect of protonophores was anomalous: the delta p was only partially collapsed, and respiration was strongly inhibited. Possible reasons for this are discussed.  相似文献   

16.
The magnitude of the proton motive force generated during in vitro substrate oxidation by Coxiella burnetii was examined. The intracellular pH of C. burnetii varied from about 5.1 to 6.95 in resting cells over an extracellular pH range of 2 to 7. Similarly, delta psi varied from about 15 mV to -58 mV over approximately the same range of extracellular pH. Both components of the proton motive force increased during substrate oxidation, resulting in an increase in proton motive force from about -92 mV in resting cells to -153 mV in cells metabolizing glutamate at pH 4.2. The respiration-dependent increase in proton motive force was blocked by respiratory inhibitors, but the delta pH was not abolished even by the addition of proton ionophores such as carbonyl cyanide-m-chlorophenyl hydrazone or 2,4-dinitrophenol. Because of this apparently passive component of delta pH maintenance, the largest proton motive force was obtained at an extracellular pH too low to permit respiration. C. burnetii appears, therefore, to behave in many respects like other acidophilic bacteria. Such responses are proposed to contribute to the extreme resistance of C. burnetii to environmental conditions and subsequent activation upon entry into the phagolysosome of eucaryotic cells in which this organism multiplies.  相似文献   

17.
The effects of malate, succinate, and glutamate on the kinetics of changes in the pH gradient (delta pH) and membrane potential (delta psi) on the peribacteroid membrane (PBM) of the symbiosomes of bean root nodules varying in age were recorded spectrophotometrically. Addition of all the tested metabolites to potassium-free incubation medium stimulated a passive acidification of the peribacteroid space (PBS) and dissipation of delta psi in PBM of young developing nodules in the presence of the K+/H+ antiporter nigericin in the medium. However, in mature nodules with a high nitrogen-fixing activity, only malate and succinate (but not glutamate) increased delta pH during both passive and ATP-dependent PBS acidification. Dicarboxylates also caused dissipation of both delta pH in the presence of nigericin in the medium and delta psi generated on PBM by H+-ATPase. A decrease in the effects of metabolites on delta pH and the absent activity of the PBM H+ pump were observed in the aging nodules. The obtained data on the changes in deltapH and dlta psi caused by the metabolites in question suggest that PBM is permeable for all these metabolites only in young nodules. Only malate and succinate (but not glutamate) are transported through PBM in mature nodules; and the rate of metabolite translocation through PBM in aging nodules is decreased.  相似文献   

18.
The acidophilic bacterium PW2 possessed a delta pH of ca. 1.9 and a delta psi of 0 mV, corresponding to a proton motive force (delta p) of--114 mV. Protonophore-treated cells possessed little delta p but a delta pH of ca. 1.5, as measured by salicylic acid distribution or pH measurement of cell lysates. Starving PW2 cells continued to possess a delta pH of ca. 1.7, but exhibited converse changes in delta psi and delta p, with the former rising to +80 to +100 mV and the latter dropping essentially to 0; progressive loss of respiration, cellular ATP, and culture viability accompanied these changes. Thus, the protonophore-treated or starving PW2 cells attained an H+ electrochemical equilibrium. Net H+ influx resulting from declining respiration probably accounted for the increased delta psi in these cells; indeed, when respiration was progressively inhibited in active cells, there was increasing transient H+ influx and a proportional increase in delta psi. This transient H+ influx was sufficient to lethally acidify the cytoplasm, but for a buffering capacity of 85 nmol of H+/mg of protein per pH unit. Thus, the linkage of the transient H+ influx with the rise in the delta psi and the cytoplasmic buffering capacity play central roles in acidophilism, and it is conceivable that the same impermeant cellular macromolecule(s) accounts for both. If so, the delta psi would be a Donnan potential that in active cells is offset by energy-dependent H+ extrusion.  相似文献   

19.
The relationship between the magnitude of the transmembrane electrical potential and the uptake of [14C]gentamicin was examined in wild-type Staphylococcus aureus in the logarithmic phase of growth. The electrical potential (delta psi) and the pH gradient across the cell membrane were determined by measuring the equilibrium distribution of [3H]tetraphenyl-phosphonium and [14C]acetylsalicylic acid, respectively. Incubation in the presence of the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) led to an increase in delta psi with no measurable effect on the pH gradient at external pHs ranging from 5.0 to 6.5, and the effect on delta psi was DCCD concentration dependent. In separate experiments, gentamicin uptake and killing were studied in the same cells under identical conditions. At pH 5.0 (delta psi = -140 mV), no gentamicin uptake occurred. In the presence of 40 and 100 microM DCCD, delta psi was increased to -162 and -184 mV, respectively, and gentamicin uptake was observed in a manner that was also dependent on the DCCD concentration. At pH 6.0 (delta psi = -164 mV), gentamicin uptake occurred in the absence of the carbodiimide but was enhanced in a concentration-dependent fashion by 40 and 100 microM DCCD (delta psi = -174 and -216 mV, respectively). In all cases increased gentamicin uptake was associated with an enhanced bactericidal effect. The results indicate that initiation of gentamicin uptake requires a threshold level of delta psi (-155 mV) and that above this level drug uptake is directly dependent on the magnitude of delta psi.  相似文献   

20.
The paper analyzes the relationship between membrane potential (delta psi), steady state pCao (-log [Ca2+] in the outer aqueous phase) and rate of ruthenium-red-induced Ca2+ efflux in liver mitochondria. Energized liver mitochondria maintain a pCao of about 6.0 in the presence of 1.5 mM Mg2+ and 0.5 mM Pi. A slight depression of delta psi results in net Ca2+ uptake leading to an increased steady state pCao. On the other hand, a more marked depression of delta psi results in net Ca2+ efflux, leading to a decreased steady-state pCao. These results reflect a biphasic relationship between delta psi and pCao, in that pCao increases with the increase of delta psi up to a value of about 130 mV, whereas a further increase of delta psi above 130 mV results in a decrease of pCao. The phenomenon of Ca2+ uptake following a depression of delta psi is independent of the tool used to affect delta psi whether by inward K+ current via valinomycin, or by inward H+ current through protonophores or through F1-ATP synthase, or by restriction of e- flow. The pathway for Ca2+ efflux is considerably activated by stretching of the inner membrane in hypotonic media. This activation is accompanied by a decreased pCao at steady state and by an increased rate of ruthenium-red-induced Ca2+ efflux. By restricting the rate of e- flow in hypotonically treated mitochondria, a marked dependence of the rate of ruthenium-red-induced Ca2+ efflux on the value of delta psi is observed, in that the rate of Ca2+ efflux increases with the value of delta psi. The pCao is linearly related to the rate of Ca2+ efflux. Activation of oxidative phosphorylation via addition of hexokinase + glucose to ATP-supplemented mitochondria, is followed by a phase of Ca2+ uptake, which is reversed by atractyloside. These findings support the view that Ca2+ efflux in steady state mitochondria occurs through an independent, delta psi-controlled pathway and that changes of delta psi during oxidative phosphorylation can effectively modulate mitochondrial Ca2+ distribution by inhibiting or activating the delta psi-controlled Ca2+ efflux pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号