首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the assumption that the dependence of the electrophoretic mobility of superhelical DNA upon the number of tertiary turns (Wr) is a monotonously increasing function devoid of points of inflection, it is concluded that the inflection (change of sign of the first derivative) observed on the curve gives evidence for a conformational transition in DNA secondary structure that begins long before the BZ or B cruciform transitions. The transition consumes 60% of the topological turns at native levels of supercoiling. It is proposed that the conformation produced belongs to the A-family. Provided that this transition indeed yields the A form (11 base pairs per turn), the energy of the BA conformational transition is estimatd to be 5.8–10.3 cal per base pair for different nucleotide sequences at physiological ionic strength. The energies of BZ and B cruciform transitions in superhelical DNA estimated from electrophoretic mobilities by the present method coincide perfectly with the values obtained by other authors using other methods. In addition, on the basis of the data of Brady et al. (1983) on the number of tertiary turns in superhelical DNA determined by X-ray scattering, it is concluded that the initial assumption is justified and the ratio of bending to twisting stiffnesses of superhelical DNA is estimated as 71 (in the fully supercoiled molecule containing 50% of the supposed A-conformation).  相似文献   

2.
Summary DNA sequencing was used to determine the specific types of DNA base changes induced following in vivo exposure of Escherichia coli to the ethylating agent N-ethyl-N-nitro-N-nitrosoguanidine (ENNG) and the hydroxyethylating agent 1-(2-hydroxyethyl)-1-nitrosourea (HENU) using the xanthine guanine phosphoribosyltransferase (gpt) gene as the genetic target. We observed that 22/30 of the ENNG-induced mutations were GCAT transitions, 4/30 were ATGC transitions, 3/30 were ATTA transversions, and 1/30 was an ATCG transversion. We observed that 37/40 HENU-induced mutations were GCAT transitions and that the remaining 3/40 were ATGC transitions. A majority of the GCAT transitions induced by ENNG and HENU (68% and 73%, respectively) occurred at the second guanine of the sequence 5-GG(A or T)-3; this sequence specificity was similar to that previously seen with the alkylating agents N-methyl- and N-ethyl-N-nitrosourea (MNU and ENU) and N-methyl-N-nitro-N-nitrosoguanidine (MNNG). A DNA strand preference for the GA changes (antisense strand), previously noted for MNU, ENU, and MNNG, was observed following exposure to HENU and ENNG. The ATGC transitions induced by ENNG, HENU, and ENU also exhibit a sequence specificity with 13/13 mutations occurring at the T of the sequence 5-NTC-3. A strand preference was not apparent for these mutations.  相似文献   

3.
Summary The inherent infidelity of Taq DNA polymerase in the polymerase chain reaction was exploited to produce random mutations in thetrp A gene. Screening of the resulting clones allowed selection of non-interactive mutant subunits retaining their intrinsic catalytic activity. Two single changes responsible for this phenotype were identified by DNA sequencing as: 126 valine (GTG)glutamic acid (GAG) and 128 valine (GTT)aspartic acid (GAT). Three single changes giving a non-interactive phenotype with an impaired intrinsic catalytic activity were identified by DNA sequencing as a66 asparagine (AAC)aspartic acid (GAC); 109lysine (AAA) arginine (AGA); 118 cysteine (TGC)arginine (CGC). Where possible, we individually assessed the importance of these residues in interaction in light of structural information from X-ray crystallography and by intergeneric protein sequence comparison.  相似文献   

4.
As part of a program to explore the structural requirement of N-glycans in the carbohydrate-mediated biological interactions, N-linked pentasaccharide core structure was stereochemically modified in terms of glycosidic linkage. Three isomers, -D-Man-(13)-[-D-Man-(16)]--D-Man-(14)--D-GlcNAc-(14)--D-GlcNAc-L-Asn, -D-Man-(13)-[-D-Man-(16)]--D-Man-(14)--D-GlcNAc-(14)--D-GlcNAc-L-Asn, and -D-Man-(13)-[-D-man-(16)]--D-Man-(14)--D-GlcNAc-(14)--D-GlcNAc-L-Asn, were synthesized. Synthesis of the pentasaccharide with natural linkage is also described.  相似文献   

5.
Summary A mentally retarded boy with trisomy 9p is described. This trisomy arose through aberrant segregation of translocation chromosome during meiosis in his mother, who has a complex translocation involving chromosomes 9, 13, and 14. Based on both G-, Q-banding, and DNA replication patterns, the patient's karyotype was identified as 47,XY,-13, +(9;13) (9pter9q12::13q3113qter), +t(13;14) (13pter13q31::14pl?14pter). We suppose his mother's karyotype to be 46,XX,-9,-13,-14,+t(9;13) (9pterq12::13q3113qter), +t(13;14) (13pter13q31::14pl?14pter), +t(9;14) (9qter9q12::14pl?14qter). His phenotypically normal brother and sister are also carriers, having the same translocation chromosome as their mother. Clinical findings of the patient included peculiar face with hypertelorism, prominent nasal bridge and deformed helix, marked delay of osseous development, hypoplastic phalangia in fingers and toes, dysplastic nails and absence of digital triradii.  相似文献   

6.
A (13, 14)--glucan 4-glucanohydrolase [(13, 14)--glucanase, EC 3.2.1.73] was purified to homogeneity from extracts of germinated wheat grain. The enzyme, which was identified as an endohydrolase on the basis of oligosaccharide products released from a (13, 14)--glucan substrate, has an apparent pI of 8.2 and an apparent molecular mass of 30 kDa. Western blot analyses with specific monoclonal antibodies indicated that the enzyme is related to (13, 14)--glucanase isoenzyme EI from barley. The complete primary structure of the wheat (13, 14)--glucanase has been deduced from nucleotide sequence analysis of cDNAs isolated from a library prepared using poly(A)+ RNA from gibberellic acid-treated wheat aleurone layers. One cDNA, designated LW2, is 1426 nucleotide pairs in length and encodes a 306 amino acid enzyme, together with a NH2-terminal signal peptide of 28 amino acid residues. The mature polypeptide encoded by this cDNA has a molecular mass of 32085 and a predicted pI of 8.1. The other cDNA, designated LW1, carries a 109 nucleotide pair sequence at its 5 end that is characteristic of plant introns and therefore appears to have been synthesized from an incompletely processed mRNA. Comparison of the coding and 3-untranslated regions of the two cDNAs reveals 31 nucleotide substitutions, but none of these result in amino acid substitutions. Thus, the cDNAs encode enzymes with identical primary structures, but their corresponding mRNAs may have originated from homeologous chromosomes in the hexaploid wheat genome.  相似文献   

7.
Four new Proteus O-specific polysaccharides were isolated by mild acid degradation from the lipopolysaccharides of P. penneri 28 (1), P. vulgaris O44 (2), P. mirabilis G1 (O3) (3), and P. myxofaciens (4), and their structures were elucidated using NMR spectroscopy and chemical methods. They were found to contain non-carbohydrate organic acids, including ether-linked lactic acid and amide-linked amino acids, and the following structures of the repeating units were established: 3)--L-QuipNAc-(13)--D-GlcpNAc-(16)--D-GlcpNAc-(1 (S)-Lac-(2–3) (1) 4)--D-GlcpA-(13)--D-GalpNAc-(14)--D-Glcp-(13)--D-Galp-(14)--D-GalpNAc-(1 L-Ala-(2–6) (2) 3)--D-GalpNAc-(16)--D-GalpNAc-(14)--D-GlcpA-(1 L-Lys-(2–6)--D-GalpA-(14) (3) 4)--D-GlcpA-(16)--D-GalpNAc-(16)--D-GlcpNAc-(13)--D-GlcpNAc-(1 (R)-aLys-(2–6) (4) where (S)-Lac and (R)-aLys stand for (S)-1-carboxyethyl (residue of lactic acid) and N-[(R)-1-carboxyethyl]-L-lysine (alaninolysine), respectively. The data obtained in this work and earlier serve as the chemical basis for classification of the bacteria Proteus.  相似文献   

8.
We report the chemical synthesis of Fuc(12)Gal-O(CH2)7CH3 (1) an analog of the natural blood group (O)H disaccharide Fuc(12)Gal-OR. Compound 1 was a good substrate for recombinant blood group B glycosyltransferase (GTB) and was used as a precursor for the enzymatic synthesis of the blood group B analog Gal(3)[Fuc(12)]Gal-O(CH2)7CH3 (2). To probe the mechanism of the GTB reaction, kinetic evaluations were carried out employing compound 1 or the natural acceptor disaccharide Fuc(12)Gal-O(CH2)7CH3 (3) with UDP-Gal and UDP-GalNAc donors. Comparisons of the kinetic constants for alternative donor and acceptor pairs suggest that the GTB mechanism is Theorell-Chance where donor binding precedes acceptor binding. GTB operates with retention of configuration at the anomeric center of the donor. Retaining reactions are thought to occur via a double-displacement mechanism with formation of a glycosyl-enzyme intermediate consistent with the proposed Theorell-Chance mechanism.  相似文献   

9.
Clusters of di-, tri-, and tetra-antennary -D-mannopyranosides were synthesized in good yields based on the coupling of amine-bearing mono- or trisaccharide {Man (16)[Man (13)]Man} haptens to poly-isocyanate or -isothiocyanate tethering cores. The relative binding properties of the resulting multivalent ligands were determined by turbidimetric and solid phase enzyme-linked lectin assays (ELLA) using plant lectins (phytohemagglutinins) Concanavalin A (Con A) and Pisum sativum (pea lectin) having four and two carbohydrate binding sites, respectively. Rapid and efficient cross-linking between tetravalent Con A and mannopyranosylated clusters were measured by a microtiter plate version of turbidimetric analyses. In inhibition of binding of the lectins to yeast mannan, the best tetravalent monosaccharide (30) and trisaccharide (31) inhibitors were shown to be 140 and 1155 times more potent inhibitors than monomeric methyl -D-mannopyranoside against pea lectin and Con A, respectively. Compounds 30 and 31 were thus 35 and 289 fold more potent than the reference monosaccharide based on their hapten contents. As a general observation, the ligands bearing the Man (16)[Man (13)]Man trimannoside structures were found to be more potent inhibitors for Con A than the ligands having single mannoside residues, whereas pea lectin could not discriminate between the two types of ligands.  相似文献   

10.
Nucleotide substitutions (i.e., point mutations) are the primary driving force in generating DNA variation upon which selection can act. Substitutions called transitions, which entail exchanges between purines (A=adenine, G=guanine) or pyrimidines (C=cytosine, T=thymine), typically outnumber transversions (e.g., exchanges between a purine and a pyrimidine) in a DNA strand. With an increasing number of plant studies revealing a transversion rather than transition bias, we chose to perform a detailed substitution analysis for the plant family Cucurbitaceae using data from several short plastid DNA sequences. We generated a phylogenetic tree for 19 taxa of the tribe Benincaseae and related genera and then scored conservative substitution changes (e.g., those not exhibiting homoplasy or reversals) from the unambiguous branches of the tree. Neither the transition nor (A+T)/(G+C) biases found in previous studies were supported by our overall data. More importantly, we found a novel and symmetrical substitution bias in which Gs had been preferentially replaced by A, As by C, Cs by T, and Ts by G, resulting in the GACTG substitution series. Understanding this pattern will lead to new hypotheses concerning plastid evolution, which in turn will affect the choices of substitution models and other tree-building algorithms for phylogenetic analyses based on nucleotide data.  相似文献   

11.
In the homothallic P/d sex interconversion system in a strain of a fission yeast (Schizosaccharomyces pombe), Pd is apparently twice as frequent as dP. This is interpreted to mean that Pd occurs before DNA replication, whereas dP occurs after. But the probabilities of their occurrence within a cell cycle are about the same (1 in 27 cell divisions).  相似文献   

12.
Summary The decomposition of polyurethane, measured gravimetrially or using infrared spectrophotometry, was found to be more complete in polyurethane based on polyester and only very small in polyurethane based on polyether. In the presence of clay minerals the decomposition was inhibited. If positive, the decomposition of polyurethane followed the sequence: remaining free isocyanatesurea and amide groupsurethane groupsisocyanuric acid rings.  相似文献   

13.
In bacterial reaction centers (RCs), changes of protonation state of carboxylic groups, of quinone-protein interactions as well as backbone rearrangements occuring upon QB photoreduction can be revealed by FTIR difference spectroscopy. The influence of compensatory mutations to the detrimental Asp L213 Asn replacement on QB /QB FTIR spectra of Rb. sphaeroides RCs was studied in three double mutants carrying a Asn M44 Asp, Arg M233 Cys, or Arg H177 His suppressor mutation. The proton uptake by Glu L212 upon QB formation, as reflected by the positive band at 1728 cm–1, is increased in the Asn M44 Asp and Arg H177 His suppressor RCs with respect to native RCs, and remains comparable to that observed in Asp L213 Asn mutant RCs. Only the Arg M233 Cys suppressor mutation affected the 1728 cm–1 band, reducing its amplitude to near native level. Thus, there is no clear correlation between the apparent extent of proton uptake by Glu L212 and the recovery of the proton transfer RC function. In all of the mutant spectra, several protein (amide I and amide II) and quinone anion (C...O/C...C) modes are perturbed compared to the spectrum of native RCs. These IR data show that all of the compensatory mutations alter the semiquinone-protein interactions and the backbone providing direct evidence of structural changes accompanying the restoration of efficient proton transfer in RCs containing the Asp L213 Asn lesion.  相似文献   

14.
A novel GCTGTT transition in the antithrombin III (ATIII) gene, resulting in an Ala387Val substitution near the reactive site, was detected in a patient with recurrent venous thrombosis and ATIII activity/antigen levels consistent with type I ATIII deficiency.  相似文献   

15.
Redox changes of the oxygen evolving complex in PS II core particles were investigated by absorbance difference spectroscopy in the UV-region. The oscillation of the absorbance changes induced by a series of saturating flashes could not be explained by the minimal Kok model (Kok et al. 1970) consisting of a 4-step redox cycle, S0 S1 S2 S3 S0, although the values of most of the relevant parameters had been determined experimentally. Additional assumptions which allow a consistent fit of all data are a slow equilibration of the S3 state with an inactive state, perhaps related to Ca2+-release, and a low quantum efficiency for the first turnover after dark-adaptation. Difference spectra of the successive S-state transitions were determined. At wavelengths above 370 nm, they were very different due to the different contribution of a Chl bandshift in each spectrum. At shorter wavelengths, the S1 S2 transition showed a difference spectrum similar to that reported by Dekker et al. 1984b and attributed to an Mn(III) to Mn(IV) oxidation. The spectrum of absorbance changes associated with the S2 S3 transition was similar to that reported by Lavergne 1991 for PS II membranes. The S0 S1 transition was associated with a smaller but still substantial absorbance increase in the UV. Differences with the spectra reported by Lavergne 1991 are attributed to electrostatic effects on electron transfer at the acceptor side associated with the S-state dependence of proton release in PS II membranes.Abbreviations Bis-Tris (bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane) - DCBQ 2,5-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA secondary electron acceptor of PS II - S0 to S4 redox state of the oxygen evolving complex - Z secondary electron donor of PS II  相似文献   

16.
Expression sites of genes encoding (13,14)--glucan 4-glucanohydrolase (EC 3.2.1.73) have been mapped in germinated barley grains (Hordeum vulgare L.) by hybridization histochemistry. A32P-labelled cDNA (copy DNA) probe was hybridized to cryosections of intact barley grains to localize complementary mRNAs. No mRNA encoding (13,14)--glucanase is detected in ungerminated grain. Expression of (13,14)--glucanase genes is first detected in the scutellum after 1 d and is confined to the epithelial layer. At this stage, no expression is apparent in the aleurone. After 2 d, levels of (13,14)--glucanase mRNA decrease in the scutellar epithelium but increase in the aleurone. In the aleurone layer, induction of (13,14)--glucanase gene expression, as measured by mRNA accumulation, progresses from the proximal to distal end of the grain as a front moving away from, and parallel to, the face of the scutellum.Abbreviations cDNA copy DNA - RNase ribonuclease  相似文献   

17.
The regulation of the expression of enzyme activities catalyzing initial reactions in the anoxic metabolism of various aromatic compounds was studied at the whole cell level in the denitrifying Pseudomonas strain K 172. The specific enzyme activities were determined after growth on six different aromatic substrates (phenol, 4-hydroxybenzoate, benzoate, p-cresol, phenylacetate, 4-hydroxyphenylacetate) all being proposed to be metabolized anaerobically via benzoyl-CoA. As a control cells were grown on acetate, or aerobically on benzoate. The expression of the following enzyme activities was determined.Phenol carboxylase, as studied by the isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate; 4-hydroxybenzoyl-CoA reductase (dehydroxylating); p-cresol methylhydroxylase; 4-hydroxybenzyl alcohol dehydrogenase; 4-hydroxybenzaldehyde dehydrogenase; coenzymeA ligases for the aromatic acids benzoate, 4-hydroxybenzoate, phenylacetate, and 4-hydroxyphenylacetate; phenylglyoxylate: acceptor oxidoreductase and 4-hydroxyphenylglyoxylate: acceptor oxidoreductase; aromatic alcohol and aldehyde dehydrogenases.The formation of most active enzymes is strictly regulated; they were only induced when required, the basic activities being almost zero. The observed whole cell regulation pattern supports the postulate that the enzyme activities play a role in anoxic aromatic metabolism and that the compounds are degraded via the following intermediates: Phenol 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; benzoate benzoyl-CoA; p-cresol 4-hydroxybenzaldehyde 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; phenylacetate phenylacetyl-CoA phenylglyoxylate benzoyl-CoA plus CO2; 4-hydroxyphenylacetate 4-hydroxyphenylacetyl-CoA 4-hydroxyphenylglyoxylate 4-hydroxybenzoyl-CoA plus CO2 benzoyl-CoA.  相似文献   

18.
Assembly and characterization of nucleosomal cores on B- vs. Z-form DNA   总被引:5,自引:0,他引:5  
The ability of right- vs. left-handed alternating purine/pyrimidine copolymers to support the formation of nucleosomes has been examined by using a trout testis assembly factor. The protein, which is thermostable, has a molecular weight of 29000 and will assemble nucleosomes onto both SV40 and calf thymus DNA. This assembly factor has been used to assemble nucleosomes onto the B and Z conformations of poly[d(Gm5C)] and the B conformation of poly[d(GC)]. The isolated B-form particles, which sediment at approximately 11 S in a sucrose density gradient, contain DNA of 140-200 bases in length and the four core histones. The isolated Z-form particles, which also sediment at approximately 11 S, contain the four core histones and DNA of 170-250 bases in length. Physical analysis of the particles by absorbance and circular dichroic spectroscopy indicates that the DNA remains in the original conformation throughout the isolation procedure. Further, the particles reconstituted onto left-handed DNA compete effectively for an anti-Z DNA antibody, while the corresponding right-handed particles do not. Analytical sedimentation velocity determinations indicate that the B-form poly[d(Gm5C)] and poly[d(GC)] particles sediment at 11.2 and 11.1 S, respectively. In contrast, the poly[d(Gm5C)] Z-form particles have an S20,w of 10.6 S. The differences in the sedimentation velocity and the density of the cores, and in the lengths of DNA associated with the particles, suggest that the conformation of the DNA affects the manner in which it associates with the histone octamer.  相似文献   

19.
Summary CGATGA (ArgTerm) transitions in the factor VIII gene causing severe haemophilia A were detected in two patients at codons 336 and 427 using a combination of oligonucleotide discrimination hybridization and DNA sequencing. Carrier detection analysis was then performed by polymerase chain reaction/direct sequencing of the appropriate region of the gene in female relatives of the probands.  相似文献   

20.
The frequency of two common disease-associated mutations in the arylsulphatase A (ASA) gene, and of a mutation causing ASA pseudodeficiency, have been established in metachromatic leukodystrophy patients diagnosed in our laboratory. A total of 37 mutant genes have been analysed. The GA change destroying the splice donor site of exon 2 is generally associated with more severe disease and was found in 43.2% of mutant ASA genes. The CT transition causing a proline to leucine substitution at position 426 in exon 8 (P426L) is associated with later onset disease, and was found in 16.2% of mutant genes. The AG transition leading to loss of a polyadenylation signal associated with ASA pseudodeficiency was present at a frequency of 7.5% in the patients and heterozygotes studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号