首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of 2,3 modifications on the antibacterial activity of ketolides was evaluated by introducing substituents in position 2 and converting the C-1, C-2, C-3 beta-keto-ester into stable 2,3 enol-ether or 2,3 anhydro derivatives. Introduction of a fluorine in C-2 is beneficial with regard to the overall antibacterial spectrum whereas the enol-ether and 2,3 unsaturated compounds, as well as the bulky gem dimethyl or 2-chloro derivatives, are less active particularly against erythromycin resistant strains. A 2-fluoro ketolide derivative demonstrates good antibacterial activity and in vivo efficacy against multi-resistant Streptococcus pneumoniae. Compared to azithromycin against Haemophilus influenzae, this compound is equivalent in vitro and slightly more active in vivo. These results demonstrate that within the ketolide class, to retain good antibacterial activity, position 2 needs to remain tetrahedral and tolerates only very small substituents such as fluorine.  相似文献   

2.
Synthesis and antibacterial activity of C6-carbazate ketolides   总被引:1,自引:0,他引:1  
A novel series of ketolides containing heteroaryl groups that are linked to the erythronolide ring via a C6-carbazate functionality has been successfully synthesized. Careful modulation of the heteroaryl groups, the length and degree of saturation of the C6-carbazate linker, and the substituents present on each of the carbazate nitrogens led to compounds with potent activity against key bacterial respiratory pathogens. The best analogs of this series had in vitro and in vivo (sc dosing) profiles that were comparable to telithromycin.  相似文献   

3.
Synthesis of C(12) des-methyl ketolide is developed featuring an intramolecular epoxide formation/elimination process to establish the C(12) stereocenter. These ketolides are potent against several key respiratory pathogens, including erythromycin resistant erm- and mef-containing strains of Streptococcus pneumoniae.  相似文献   

4.
5.
A novel series of 4-methyl substituted pyrazole derivatives were designed, synthesized and biologically evaluated as potent glucagon receptor (GCGR) antagonists. In this study, compounds 9q, 9r, 19d and 19e showed high GCGR binding (IC50?=?0.09?μM, 0.06?μM, 0.07?μM and 0.08?μM, respectively) and cyclic-adenosine monophosphate (cAMP) activities (IC50?=?0.22?μM, 0.26?μM, 0.44?μM and 0.46?μM, respectively) in cell-based assays. Most importantly, the docking experiment demonstrated that compound 9r formed extensive hydrophobic interactions with the receptor binding pocket, making it justifiable to further investigate the potential of becoming a GCGR antagonist.  相似文献   

6.
A novel series of C(12) ethyl erythromycin derivatives have been discovered which exhibit in vitro and in vivo potency against key respiratory pathogens, including those resistant to erythromycin. The C(12) modification involves replacing the natural C(12) methyl group in the erythromycin core with an ethyl group via chemical synthesis. From the C(12) ethyl macrolide core, a series of C(12) ethyl ketolides were prepared and tested for antibacterial activity against a panel of relevant clinical isolates. Several compounds were found to be potent against macrolide-sensitive and -resistant bacteria, whether resistance was due to ribosome methylation (erm) or efflux (mef). In particular, the C(12) ethyl ketolides 4k,4s,4q,4m, and 4t showed a similar antimicrobial spectrum and comparable activity to the commercial ketolide telithromycin. The in vivo efficacy of several C(12) ethyl ketolides was demonstrated in a mouse infection model with Streptococcus pneumoniae as pathogen.  相似文献   

7.
Das J  Crouch RK  Ma JX  Oprian DD  Kono M 《Biochemistry》2004,43(18):5532-5538
In rhodopsin, the 9-methyl group of retinal has previously been identified as being critical in linking the ligand isomerization with the subsequent protein conformational changes that result in the activation of its G protein, transducin. Here, we report studies on the role of this methyl group in the salamander rod and cone pigments. Pigments were generated by combining proteins expressed in COS cells with 11-cis 9-demethyl retinal, where the 9-methyl group on the polyene chain has been deleted. The absorption spectra of all pigments were blue-shifted. The red cone and blue cone/green rod pigments were unstable to hydroxylamine; whereas, the rhodopsin and UV cone pigments were stable. The lack of the 9-methyl group of the chromophore did not affect the ability of the red cone and blue cone/green rod pigments to activate transducin. On the other hand, with the rhodopsin and UV cone pigments, activation was diminished. Interestingly, the red cone pigment containing the retinal analogue remained active longer than the native pigment. Thus, the 9-methyl group of retinal is not important in the activation pathway of the red cone and blue cone/green rod pigments. However, for the red cone pigment, the 9-methyl group of retinal appears to be critical in the deactivation pathway.  相似文献   

8.
C11, C12-cyclic urea analogues of ketolides were designed and synthesized by use of a novel ketene acetal intermediate. This intermediate enabled introduction of an amino group at C12 stereospecifically and in high yield. The resulting cyclic urea ketolides appear to have in vitro activity similar to that of telithromycin which contains a C11, C12 cyclic carbamate moiety. Some of the C2 fluorinated compounds have improved potency against erm-containing Streptococcus pyogenes.  相似文献   

9.
10.
The article summarizes the results of recent studies on the metabolism of 10-ethylestr-4-ene-3,17-dione, 10-[(1R)-1-hydroxyethyl]-,and 10-[(1S)-1-hydroxyethyl]estr-4-ene-3, 17-dione, in placenta. These compounds are the 19-methyl analogs of androstenedione, 19-hydroxyandrostenedione, and 19-oxoandrostenedione, respectively. No conversion of 10-ethylestr-4-ene-3,17-dione to either estrogens or oxygenated metabolites was detected. Both 10-[(1R)-1-hydroxyethyl]- and 10-[(1S)-1-hydroxyethyl]estr-4-ene-3, 17-dione were oxygenated to 10-(1,1-dihydroxyethyl)estr-4-ene-3,17-dione and isolated following in situ dehydration as 10-acetylestr-4-ene-3,17-dione. Evidence for the involvement of aromatase in these conversions is discussed. No conversion of 10-acetylestr-4-ene-3,17-dione to either estrogens or other oxygenated products was detected. These results lead us to propose a new mechanism for the third aromatase monooxygenation. We propose that the third oxygenation is initiated by 1β-hydrogen abstraction at C1 of 19,19-dihydroxyandrostenedione, followed by homolytic cleavage of the C10−C19 bond with concurrent formation of a Δ1(10),4−3-ketosteroid and a C19 carbon radical, and terminated by oxygen rebound at C19.  相似文献   

11.
The synthesis of a series of new antitumour agents, the benzothiazole substituted quinol ethers and esters, is reported via the hypervalent iodine mediated oxidation of hydroxylated 2-phenylbenzothiazoles. The products were found to be active in vitro against human colon and breast cancer cell lines with IC50 values in the nanomolar range.  相似文献   

12.
Novel C6-carbamate ketolides with C2-fluorination and C9-oximation have been synthesized. The best compounds in this series displayed MIC values of 0.03-0.12 microg/mL against streptococci containing erm and mef resistance determinants and 2-4 microg/mL against Haemophilus influenzae. Several compounds also showed measurable activity against erm(B)-containing enterococci with MIC values of 2-8 microg/mL. In vivo activity was adversely affected by fluorination, possibly as a result of increased serum protein binding.  相似文献   

13.
A new type of ketolides, bearing an N-aryl-alkyl acetamide moiety at the C-9 iminoether and a cyclic carbonate at the C-11,12 position was prepared and the antibacterial activities of the compounds were evaluated. Some of the derivatives showed potent antibacterial activity against both Haemophilus influenzae and Streptococcus pneumoniae, which are clinically important respiratory tract pathogens. Among the derivatives prepared, compound 5s with a quinolin-4-yl moiety was found to have potent and well-balanced activity against S. pneumoniae and H. influenzae including erythromycin-resistant strains.  相似文献   

14.
15.
Photosynthesis Research - Recently, microalgae have attracted attention as sources of biomass energy. However, fatty acids from the microalgae are mainly unsaturated and show low stability in...  相似文献   

16.
This article reports the novel synthesis of substituted apiosyl nucleosides. The key apiosyl intermediate 9 was constructed by sequential ozonolysis, reductions, and acetylation from the ester derivative 6. The nucleosides of uracil, thymine, cytosine, and adenine were synthesized using the glycosyl condensation procedure (silyated base and TMSOTf). The antiviral activities of the synthesized compounds against the HIV-1, HSV-1, HSV-2, and HCMV viruses were evaluated. The adenine derivative 26 showed weak anti-HIV activity (EC(50) = 10.1 microg/ml) without exhibiting any cytotoxicity up to a concentration of 100 microM.  相似文献   

17.
18.
An Escherichia coli strain capable of producing the potent antibiotic erythromycin C (Ery C) was developed by expressing 17 new heterologous genes in a 6-deoxyerythronolide B (6dEB) producer strain. The megalomicin gene cluster was used as the source for the construction of two artificial operons that contained the genes encoding the deoxysugar biosynthetic and tailoring enzymes necessary to convert 6dEB to Ery C. The reconstructed mycarose operon contained the seven genes coding for the enzymes that convert glucose-1-phosphate (G-1-P) to TDP-L-mycarose, a 6dEB mycarosyl transferase, and a 6dEB 6-hydroxylase. The activity of the pathway was confirmed by demonstrating conversion of exogenous 6dEB to 3-O-alpha-mycarosylerythronolide B (MEB). The reconstructed desosamine operon contained the six genes necessary to convert TDP-4-keto-6-deoxyglucose, an intermediate formed in the mycarose pathway, to TDP-D-desosamine, a desosamine transferase, a 6dEB 12-hydroxylase, and the rRNA methyltransferase ErmE; the last was required to confer resistance to the host cell upon production of mature macrolide antibiotics. The activity of this pathway was demonstrated by conversion of MEB to Ery C. When the mycarose and desosamine operons were expressed in an E. coli strain engineered to synthesize 6dEB, Ery C and Ery D were produced. The successful production of Ery C in E. coli shows the potentiality of this model microorganism to synthesize novel 6-deoxysugars and to produce bioactive glycosylated compounds and also establishes the basis for the future use of E. coli both in the production of new glycosylated polyketides and for the generation of novel bioactive compounds through combinatorial biosynthesis.  相似文献   

19.
20.
The synthesis of 15-methyl or 15,16-dimethyl prostaglandins has been accomplished starting from the lactone 1, the intermediate for the synthesis of natural prostaglandins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号