首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver cathepsin B was tested for its peptide-bond specificity against bradykinin and the oxidized insulin A-chain. Bradykinin was shown to be resistant to the action of cathepsin B. One possible reason for this resistance is the proline content of the peptide and the discrimination against proline residues at three or four subsites of cathepsin B. Oxidized insulin A-chain was degraded by a peptidyl dipeptidase activity. Three dipeptides were cleaved from the C-terminal part of the insulin A-chain after having been incubated for 2 h (molar ration E:S = 1:2800) and six dipeptides were released after a longer digestion (10 h, E:S = 1:575).  相似文献   

2.
Purified rat brain cathepsin B (EC 3.4.22.1) converted prodynorphins or proenkephalins to shorter active forms by the preferential removal of C-terminal dipeptides. The substrate affinities for Met-enkephalin-Arg-Phe or -Arg-Gly-Leu were Km 46 and 117 microM, and kcat/Km ratios were 67 and 115 microM-1, min-1, respectively. Met-Enkephalin was inactivated by the same mechanism (Km-450 microM; kcat/Km = 0.12 microM-1 min-1). The comparison of cathepsin B hydrolysis for pro-opioids, a synthetic hexapeptide and its fragments, C-blocked peptides (pro-opioid amides, Met-enkephalin amide, substance P), and bovine myelin basic protein, provided information on the influence of the C-terminal residues on dipeptide release, the rates as correlated to peptide length, and the optimal arrangement of residues favoring scission at the P1-P'1 sites. The brain enzyme was stereospecific and did not act on peptides with C-terminal D-amino acid substituents. Arg hindered and Pro blocked the release of C-terminal dipeptides when in the P'2 positions. The suppression of dipeptide release by agents inhibiting endopeptidase actions such as E-64 and leupeptin, and the endogenous brain factor (cerebrocystatin) point to similar catalytic mechanisms for the exopeptidase action.  相似文献   

3.
Cathepsins M and B from rabbit liver lysosomes were separated by chromatography on Ultrogel AcA34 at low ionic strength and purified to homogeneity, and their catalytic and molecular properties were compared. Cathepsin M was relatively inactive with synthetic peptide substrates. Thus, it hydrolyzed benzoyl arginine naphthylamide at only one-fifth the rate observed with cathepsin B, and no activity was detected with Gly-Phe naphthylamide which is a relatively good substrate for cathepsin B. On the other hand, cathepsin M exhibited a preference for protein substrates. It was more active than cathepsin B in catalyzing the inactivation of the following enzymes: rabbit muscle or liver fructose-1,6-bisphosphate aldolases, rabbit liver fructose-1,6-bisphosphatase and pyruvate kinase, yeast glucose-6-phosphate dehydrogenase, and rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. With glucagon as substrate, both enzymes showed similar peptidyl dipeptidase activities with some minor differences in peptide bond specificity. Cathepsins M and B are similar in size, with apparent molecular weights of 30,200 for cathepsin M and 28,800 for cathepsin B, and in amino acid composition and carbohydrate content. Each contains approximately 2-3 equivalents/mol glucosamine, 3 equivalents/mol mannose, and no fucose or galactosamine. They also show similar microheterogeneity in sodium dodecylsulfate-gel electrophoresis and isoelectric focusing; this microheterogeneity is probably related to differences in glycosylation. Extensive homology in primary structure for the two proteins was indicated by the similar patterns of peptides formed on digestion with trypsin.  相似文献   

4.
The mechanism of degradation of fructose-1,6-bisphosphate aldolase from rabbit muscle by the lysosomal proteinase cathepsin B was determined. Treatment of aldolase with cathepsin B destroys up to 90% of activity with fructose 1,6-bisphosphate as substrate, but activity with fructose 1-phosphate is slightly increased. Cathepsin L, another lysosomal thiol proteinase, and papain are also potent inactivators of aldolase, whereas inactivation is not caused by cathepsins D or H even at high concentrations, or by cathepsin B inhibited by leupeptin or iodoacetate. The cathepsin-B-treated aldolase shows no detectable change in subunit molecular weight, oligomer molecular weight or subunit interactions. Cathepsin B cleaves dipeptides from the C-terminus of th aldolase subunits. Four dipeptides are released sequentially: Ala-Tyr, Asn-His, Ile-Ser and Leu-Phe, and a maximum of five additional dipeptides may be released. There are indications that this peptidyldipeptidase activity of cathepsin B may be an important aspect of its action on protein substrates generally.  相似文献   

5.
The anticancer drug doxorubicin (DOX) has been linked to chimeric BR96, an internalizing monoclonal antibody that binds to a Lewis(y)-related, tumor-associated antigen, through two lysosomally cleavable dipeptides, Phe-Lys and Val-Cit, giving immunoconjugates 72 and 73. A self-immolative p-aminobenzyloxycarbonyl (PABC) spacer between the dipeptides and the DOX was required for rapid and quantitative generation of free drug. DOX release from model substrate Z-Phe-Lys-PABC-DOX 49 was 30-fold faster than from Z-Val-Cit-PABC-DOX 42 with the cysteine protease cathepsin B alone, but rates were identical in a rat liver lysosomal preparation suggesting the participation of more than one enzyme. Conjugates 72 and 73 showed rapid and near quantitative drug release with cathepsin B and in a lysosomal preparation, while demonstrating excellent stability in human plasma. Against tumor cell lines with varying levels of BR96 expression, both conjugates showed potent, antigen-specific cytotoxic activity, suggesting that they will be effective in delivering DOX selectively to antigen-expressing carcinomas.  相似文献   

6.
—Catheptic carboxypeptidase (cathepsin A) is present in lysosomal-enriched fractions of rat brain at levels approximately 5-fold that of cathepsin B1 and of the classical carboxypeptidase A but lower than that of cathepsin C and carboxypeptidase B. Cathepsin A was purified 40-fold by extraction of calf brain with an acetate buffer containing 0.5% desoxycholate followed by heat treatment, salt precipitation and chromatography on DEAE-Sephadex. Purification revealed the presence of two distinct isoenzymatic forms of high mol. wt that were very stable when frozen in the presence of sucrose and KCl. Among N-protected dipeptides used as substrates the highest activity was given by Z-Glu-Tyr and Z-Phe-Tyr at a pH optimum of 5.5, Km1.1 mm and Vmax 0.5 μmol (Tyr)/mg protein per min. Brain cathepsin A was completely inhibited by low concentrations of DFP and PCMB but unaffected by thiols, EDTA and specific inhibitors of other cathepsins (pepstatin and chymostatin). The carboxypeptidase A-like specificity of cathepsin A was confirmed by breakdown of Ile5-angiotensin with release of C-terminal Phe. Cathepsin A may play a role in the turnover of selected hormonal peptides containing C-terminal neutral amino acids and in the sequential breakdown of proteins associated with degenerative conditions such as demyelination.  相似文献   

7.
Degradation of myofibrillar proteins by cathepsins B and D   总被引:4,自引:0,他引:4       下载免费PDF全文
1. The procedure of Barrett [(1973) Biochem. J.131, 809-822] for isolating cathepsins B and D from human liver was modified for use with rat liver and skeletal muscle. The purified enzymes appeared to be similar to those reported in other species. 2. Sephadex G-75 chromatography of concentrated muscle extract resolved two peaks of cathepsin B inhibitory activity, corresponding to molecular weights of 12500 and 62000. 3. The degradation of purified myofibrillar proteins by cathepsins B and D was clearly demonstrated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. After incubation with enzyme, the polypeptide bands representing the substrates decreased in intensity and lower molecular weight products appeared. 4. Cathepsins B and D, purified from either rat liver or skeletal muscle, were shown to degrade myosin, purified from either rabbit or rat muscle. Soluble denatured myosin was degraded more extensively than insoluble native myosin. Degradation by cathepsin B was inhibited by lack of reducing agent, or by myoglobin, iodoacetic acid and leupeptin, but not by pepstatin. The same potential modifiers were applied to cathepsin D, and only pepstatin produced inhibition. 5. Rat liver cathepsin B had a pH optimum of 5.2 on native rabbit myosin. The pH optimum of cathepsin D was 4.0, with a shoulder of activity about 1pH unit above the optimum. 6. Rat liver cathepsins B and D were demonstrated to degrade rabbit F-actin at pH5.0, and were inhibited by leupeptin and pepstain, respectively. 7. The degradation of myosin and actin by cathepsin D was more extensive than that by cathepsin B.  相似文献   

8.
Limited proteolysis of rabbit liver and muscle aldolases by subtilisin and cathepsin B results in decreased catalytic activity, associated with the release of acid-soluble peptides from the COOH terminus. Analysis of the sequence of these peptides confirms the COOH-terminal sequence of the muscle enzyme and provides new information on the COOH-terminal sequence of the liver enzyme. As previously reported for muscle aldolase, cathepsin B releases mainly dipeptides from the COOH terminus of liver aldolase. The COOH-terminal sequence of rabbit liver aldolase is SerThrGlnSerLeuPheThrAla SerTyrThrTyr. The Gln-Ser bond is resistant to Staphylococcus aureus protease, which hydrolyzes a GluSer bond at the corresponding positions in the muscle enzyme.  相似文献   

9.
The substrate specificities of two different molecular sizes of cathepsin A, A,L (large form) and A,S (small form), for synthetic substrates were examined kinetically. Both enzymes showed a similar broad substrate specificity against various acyl dipeptides, amino acid esters, and amino acid amides. Z-Phe-Ala and Ac-Phe-OEt were good substrates. Peptides containing hydrophobic amino acids were hydrolyzed rapidly. The presence of hydrophobic amino acid residues, not only at the C-terminal position but also at the second position and probably the third position from the C-terminal, resulted in an increase in the rate of hydrolysis. Peptides containing glycine and proline were hydrolyzed slowly. Inhibition studies with Z-D-Phe-D-Ala and Z-Phe suggested that the peptidase and esterase activities of the enzymes are both catalyzed by the same site of the enzyme molecule, but it remains to be elucidated whether or not the binding sites for peptides and esters are the same.  相似文献   

10.
To investigate dipeptide assimilation by the liver, a series of interrelated experiments were performed in rats. Partial hepatectomy prolonged the plasma half-life (min) of Gly-Ala (3.42 +/- 0.22 versus 4.90 +/- 0.35, p less than 0.05) but had no significant effect on plasma half-life of Gly-Leu, Gly-Pro, or Gly-Sar. We then investigated the rate of disappearance (mumol X (g liver X h)-1) of the above four dipeptides (initial concentration = 1 mM) from the medium during isolated liver perfusion. The order of dipeptide disappearance was: Gly-Leu (8.75 +/- 0.65) greater than Gly-Ala (3.36 +/- 0.46) greater than Gly-Pro (1.29 +/- 0.54) greater than Gly-Sar (0.35 +/- 0.12). This order of dipeptide disappearance corresponded exactly to the order of the rates of glycine accumulation in the medium during liver perfusion with the four dipeptides. Addition of glucagon had no effect on the disappearance rate of Gly-Ala from the medium, but reduced accumulation rates of glycine (3.39 +/- 0.30 versus 1.42 +/- 30, p less than 0.01) and alanine (4.42 +/- 0.66 versus 1.35 +/- 0.39, p less than 0.01). Finally, we found that hydrolysis by the liver plasma membranes and/or perfusion medium accounted for disappearance of dipeptides. In conclusion, the liver does not appear to have a transport system for dipeptides, but assimilates dipeptides by extracellular hydrolysis. Hydrolysis is achieved by enzymes either located on the plasma membranes or released from the cytosol. The amino acid residues released as the result of dipeptide hydrolysis are then taken up by the liver.  相似文献   

11.
Naturally occurring inhibitors of intracellular proteinases   总被引:1,自引:0,他引:1  
The papain inhibitor isolated from chicken egg white inhibits the enzymatic activity of cathepsin B1 and cathepsin C. The inhibitor bears two nonoverlapping reactive sites: one binds cathepsin B1, papain, ficin, and bromelain, the other one cathepsin C. The inhibitor decreases the degree of an immunologic hypersensitive reaction, the so-called Arthus reaction. A statistically significant inhibition of this immunologically developed inflammation occurs only if the inhibitor is applied intradermally and simultaneously with the provoking dose of the antigen to rabbits sensitized to the same antigen. The pepsin inhibitor from the body walls of the roundworm Ascaris lumbricoides inhibits the proteolytic activity of cathepsin E. This inhibitor covalently bound to Sepharose 4B was used for affinity chromatography of cathepsin E. A cathepsin D inhibitor was isolated from potato tubers and its inhibitory and chemical characteristics were studied. The inhibitor does not inhibit either cathepsin E or pepsin yet inhibits trypsin in the alkaline pH-range. The molecular weight of the inhibitor is 21 790 and its molecule consists of 199 amino acid residues. The sequence of 17 amino acid residues was determined by Edman degradation of the inhibitor molecule.  相似文献   

12.
Proteolytically active complexes of the proteinase cathepsin L, with an endogenous inhibitor of cysteine proteinases, were purified from sheep liver. The complexes were active against the synthetic substrate Z-Phe-Arg-NHMec and also the proteins azocasein and gelatin. The composition of the complexes was demonstrated by Western blotting, after reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis with monospecific antibodies raised against purified sheep liver cathepsin L and purified sheep liver cysteine proteinase inhibitor (probably stefin B). Similar complexes could be formed in vitro, by coincubation of purified sheep liver cathepsin L with the purified sheep liver cystatin at a pH of 5.5 or higher.  相似文献   

13.
Nucleic acids were extracted from the tumor (IT-1) and purified to give poly (A)-containing RNA, which was subjected to protein synthesis in vitro with a wheat germ extract. Gel-filtration (Bio Gel P-30) profiles of the translated product showed the presence of glucagon-like substance, and the results of treatment of fractions with glucagon antibodies (30K or K4023) showed the possibility that translated products contained true-glucagon. This confirms glucagon synthesis in IT-1. The molecular weight of the translated glucagon was estimated to be 3,000 from the K-value. The time courses of the glucagon synthesis were examined in cultured tumor cells (ITC-1) using 3H-leucine as a tracer. A large molecular weight protein was already detected after pulse labeling for 1 h. The amount of labeled glucagon in the cells was shown to be maximum at 1 h. True-glucagon was converted at 3 h to smaller molecular weight peptides which reacted with the C-terminal antibody of glucagon. In vitro protein synthesis, peptides with molecular weights of around 10,000 were major products in 15-30 min.  相似文献   

14.
Purified cathepsin B from porcine parathyroid glands was allowed to act upon radioactive bovine parathormone and proparathormone at various ratios of enzyme to substrate and for different times. The reaction products were isolated by ion exchange chromatography and analyzed by gel electrophoresis, amino acid composition, sequence analysis, and bioassay. The enzyme cleaved parathormone between residues 36 and 37 yielding a major carboxyl and amino fragment and appeared to cleave proparathormone at the same locus. The amino fragments were degraded further by removal of small peptides (possibly, di- or tripeptides) from their COOH termini. In contrast there was little if any degradation of the carboxyl fragment (residues 37 to 84). Despite the ease with which the enzyme cleaved the arginyl bond in the synthetic substrate benzyloxycarbonyl-Val-Lys-Lys-Arg-(4-methoxy)-2-naphthylamide, it did not remove the near homologous NH2-terminal hexapeptide extension of proparathormone (Lys-Ser-Val-Lys-Lys-Arg-R)--a reaction that would lead to the formation of parathormone from proparathormone. Purified liver cathepsin B cleaved the hormonal substrates in a fashion identical with that of the parathyroid enzyme.  相似文献   

15.
Lysosomal beta-D-galactosidase (beta-gal), the enzyme deficient in the autosomal recessive disorders G(M1) gangliosidosis and Morquio B, is synthesized as an 85-kDa precursor that is C-terminally processed into a 64-66-kDa mature form. The released approximately 20-kDa proteolytic fragment was thought to be degraded. We now present evidence that it remains associated to the 64-kDa chain after partial proteolysis of the precursor. This polypeptide was found to copurify with beta-gal and protective protein/cathepsin A from mouse liver and Madin-Darby bovine kidney cells and was immunoprecipitated from human fibroblasts but not from fibroblasts of a G(M1) gangliosidosis and a galactosialidosis patient. Uptake of wild-type protective protein/cathepsin A by galactosialidosis fibroblasts resulted in a significant increase of mature and active beta-gal and its C-terminal fragment. Expression in COS-1 cells of mutant cDNAs encoding either the N-terminal or the C-terminal domain of beta-gal resulted in the synthesis of correctly sized polypeptides without catalytic activity. Only when co-expressed, the two subunits associate and become catalytically active. Our results suggest that the C terminus of beta-gal is an essential domain of the catalytically active enzyme and provide evidence that lysosomal beta-galactosidase is a two-subunit molecule. These data may give new significance to mutations in G(M1) gangliosidosis patients found in the C-terminal part of the molecule.  相似文献   

16.
In this study, a series of N-chloro-acetylated dipeptides were synthesised by the application of Houghten's methodology of multiple analog peptide syntheses (MAPS). The peptides, all of which contain a C-terminal free acid, were tested as inactivators of bovine cathepsin B, in an attempt at exploiting the known and, amongst the cysteine proteinases, unique carboxy dipeptidyl peptidase activity of the protease. We have succeeded in obtaining a number of effective inactivators, the most potent of which-chloroacetyl-Leu-Leu-OH, inactivates the enzyme with an apparent second-order rate constant of 3.8 x 10(4)M(-1)min(-1). In contrast, the esterified analog, chloroacetyl-Leu-Leu-OMe, inactivates the enzyme some three orders of magnitude less efficiently, lending credence to our thesis that a free carboxylic acid moiety is an important determinant for inhibitor effectiveness. This preliminary study has highlighted a number of interesting features about the specificity requirements of the bovine proteinase and we believe that our approach has great potential for the rapid delineation of the subsite specificities of cathepsin B-like proteases from various species.  相似文献   

17.
Toll-like receptors (TLR) recognize a variety of microbial products and activate defense responses. Pathogen sensing by TLR2/4 requires accessory molecules, whereas little is known about a molecule required for DNA recognition by TLR9. After endocytosis of microbes, microbial DNA is exposed and recognized by TLR9 in lysosomes. We here show that cathepsins, lysosomal cysteine proteases, are required for TLR9 responses. A cell line Ba/F3 was found to be defective in TLR9 responses despite enforced TLR9 expression. Functional cloning with Ba/F3 identified cathepsin B/L as a molecule required for TLR9 responses. The protease activity was essential for the complementing effect. TLR9 responses were also conferred by cathepsin S or F, but not by cathepsin H. TLR9-dependent B cell proliferation and CD86 upregulation were apparently downregulated by cathepsin B/L inhibitors. Cathepsin B inhibitor downregulated interaction of CpG-B with TLR9 in 293T cells. These results suggest roles for cathepsins in DNA recognition by TLR9.  相似文献   

18.
Cathepsins B and H from rat liver contain one asparagine-linked sugar chain in each molecule. The sugar chains were liberated from the polypeptide portions by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. Paper electrophoresis of the radioactive oligosaccharide fractions revealed that they were mixtures of neutral oligosaccharides only. After fractionation by gel filtration the structure of each oligosaccharide was studied by sequential exoglycosidase digestion in combination with methylation analysis. The sugar chain of cathepsin H was a high mannose type oligosaccharide which varied in size from 5 to 9 mannose residues; on the other hand the major oligosaccharide of cathepsin B was a tetrasaccharide whose structure was Manalpha 1----6Manbeta 1----4GlcNAcbeta 1----4GlcNAc.  相似文献   

19.
The inherited epilepsy Unverricht-Lundborg disease (EPM1) is caused by loss-of-function mutations in the cysteine protease inhibitor, cystatin B. Because cystatin B inhibits a class of lysosomal cysteine proteases called cathepsins, we hypothesized that increased proteolysis by one or more of these cathepsins is likely to be responsible for the seizure, ataxia, and neuronal apoptosis phenotypes characteristic of EPM1. To test this hypothesis and to identify which cysteine cathepsins contribute to EPM1, we have genetically removed three candidate cathepsins from cystatin B-deficient mice and tested for rescue of their EPM1 phenotypes. Whereas removal of cathepsins L or S from cystatin B-deficient mice did not ameliorate any aspect of the EPM1 phenotype, removal of cathepsin B resulted in a 36-89% reduction in the amount of cerebellar granule cell apoptosis depending on mouse age. The incidence of an incompletely penetrant eye phenotype was also reduced upon removal of cathepsin B. Because the apoptosis and eye phenotypes were not abolished completely and the ataxia and seizure phenotypes experienced by cystatin B-deficient animals were not diminished, this suggests that another molecule besides cathepsin B is also responsible for the pathogenesis, or that another molecule can partially compensate for cathepsin B function. These findings establish cathepsin B as a contributor to the apoptotic phenotype of cystatin B-deficient mice and humans with EPM1. They also suggest that the identification of cathepsin B substrates may further reveal the molecular basis for EPM1.  相似文献   

20.
Suban D  Zajc T  Renko M  Turk B  Turk V  Dolenc I 《Biochimie》2012,94(3):719-726
The release of a thyroid hormone from thyroglobulin is controlled by a complex regulatory system. We focused on the extracellular action of two lysosomal enzymes, cathepsin C (catC, dipeptidyl peptidase I) and PGCP (lysosomal dipeptidase), on thyroglobulin, and their ability to liberate the hormone thyroxin. Cathepsin C, an exopeptidase, removes dipeptides from the N-terminus of substrates, and PGCP hydrolyses dipeptides to amino acids. In vitro experiments proved that cathepsin C removes up to 12 amino acids from the N-terminus of porcine thyroglobulin, including a dipeptide with thyroxin on position 5. The newly formed N-terminus, Arg-Pro-, was not hydrolysed further by cathepsin C. Cell culture experiments with FRTL-5 cell line showed localization of cathepsin C and PGCP and their secretion into the medium. Secretion of the active cathepsin C from FRTL-5 cells is stimulated by TSH, insulin, and/or somatostatin. The released enzymes liberate thyroxin from porcine thyroglobulin added to media. The hormone liberation can be reduced by synthetic inhibitors of cysteine proteinases and metalloproteinases. Additionally, we show that TSH, insulin, and/or somatostatin induce up-regulation of N-acetylglucosaminyltransferase 1, the enzyme responsible for the initiation of biosynthesis of hybrid and complex N-glycosylation of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号