首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacological and biochemical characteristics of the partially purified -aminobutyric acid (GABA)B receptor using baclofen affinity column chromatography have been examined. The Scatchard analysis of [3H]GABA binding to the purified GABAB receptor showed a linear relationship and the KD and Bmax values were 60 nM and 118 pmol/mg of protein, respectively. Although GTP and Mg2+ did not affect on the GABAB receptor binding, Ca2+ significantly increased [3H]GABA binding to the purified GABAB receptor in a dose-dependent manner and showed its maximum effect at 2 mM. The enhancement of the binding by Ca2+ was found to be due to the increase of Bmax by the Scatchard analysis. The treatments with pronase and trypsin significantly decreased the binding of [3H]GABA, but phospholipase A2 had no significant effect on the binding. In addition, treatment with glycosidases such as glycopeptidase A and -galactosidase significantly decreased the binding of [3H]GABA to the purified GABAB receptor. These results suggest that purification of the solubilized GABAB receptor by the affinity column chromatography may result in the functional uncoupling of GABAB receptor with GTP-binding protein. Furthermore, the present results suggest that cerebral GABAB receptor may be a glycoprotein and membrane phospholipids susceptible to phospholipase A2 treatment may not be involved in the exhibition of the binding activity.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

2.
Subunit Composition and Function of GABAA Receptors of Rat Spermatozoa   总被引:1,自引:0,他引:1  
GABA triggers mammalian sperm acrosome reaction (AR). Here, evidence is presented, showing that rat spermatozoa contain GABAA receptors, composed of 5, 1 and 3 subunits. The effects of GABAA receptor agonist and antagonist on the induction of AR in rat spermatozoa were assessed using the chlortetracycline assay. Muscimol, a GABAA receptor agonist, triggered AR; whereas bicuculline, a GABAA receptor antagonist and picrotoxin, a GABAA receptor/Cl channel blocker, inhibited the ability of GABA or progesterone to induce AR. In conclusion, GABAA receptors appear to mediate the action of progesterone in inducing AR in rat spermatozoa.  相似文献   

3.
Midbrain slices containing the dorsal and medial raphe nuclei were prepared from rat brain in order to study serotonergic-GABAergic interaction. The slices were loaded with either [3H] serotonin or [3H]GABA, superfused and the electrically induced efflux of radioactivity was determined. The GABAA receptor agonist muscimol (3 to 30 M) and the GABAB receptor agonist baclofen (30 and 100 M) inhibited [3H]serotonin and [3H]GABA release. These effects of muscimol were reversed by the GABAA antagonists bicuculline (100 M). The GABAB antagonist phaclofen (100 M) also antagonized the baclofen-induced inhibition of [3H]serotonin and [3H]GABA release. Phaclofen by itself increased [3H]serotonin release but it did not alter [3H]GABA overflow. Muscimol (10 M) and baclofen (100 M) also inhibited [3H]serotonin release after depletion of GABAergic neurons by isoniazid pretreatment. These findings indicate the presence of postsynaptic GABAA and GABAB receptors located on serotonergic neurons. The 5-HT1A receptor agonist 8-OH-DPAT (0.01 to 1 M) and the 5-HT1B receptor agonist CGS-12066A (0.01 to 1 M) inhibited the electrically stimulated [3H]serotonin and [3H]GABA release. The 5-HT1A antagonist WAY-100135 (1 M) was without effect on [3H]serotonin and [3H]GABA efflux by itself but it reversed the 8-OH-DPAT-induced transmitter release inhibition. During KCl (22 mM)-induced depolarization, tetrodotoxin (1 M) did not alter the inhibitory effect of CGS-12066A (1 M) on [3H]GABA release, it did blocked, however, the ability of 8-OH-DPAT (1 M) to reduce [3H]GABA efflux. After depletion of raphe serotonin neurons by p-chlorophenylalanine pretreatment, CGS-12066A (1 M) still inhibited [3H]GABA release whereas in serotonin-depleted slices, 8-OH-DPAT (1 M) was without effect on the release. We conclude that reciprocal influence exists between serotonergic projection neurons and the GABAergic interneurons or afferents in the raphe nuclei and these interactions may be mediated by 5-HT1A/B and GABAA/B receptors. Both synaptic and non-synaptic neurotransmission may be operative in the 5-HTergic-GABAergic reciprocal interaction which may serve as a local tuning in the neural connection between cerebral cortex and midbrain raphe nuclei.  相似文献   

4.
Using whole cell patch-clamp recordings from pyramidal cells acutely dissociated from rat hippocampal slices, Ro-15 1788 (flumazenil, FLU) was shown to enhance the GABAA-receptor mediated currents evoked by application of -aminobutyric acid (GABA) and to antagonize the enhancing effect of the benzodiazepine agonist flurazepam (FZP) on the GABAA response. Both FLU and FZP increased the peak and the steady-state components of the responses and accelerated the current decay. This suggests that both agents act via a common mechanism on GABA transmission. It is concluded that FLU possesses high affinity for the binding site, but low efficacy on the GABAA-benzodiazepine receptor. This suggests that FLU acts as a partial agonist on GABAA receptors.  相似文献   

5.
Sixteen known 5-HT3 receptor blockers, including clozapine, fully or partially reverse the inhibitory effect of 1 M GABA on [35S]TBPS binding, indicating that they are also GABAA antagonists, some of them selective for subsets of GABAA receptors. The 5-HT3 receptor blocker, ondansetron, has been reported to produce some antipsychotic and anxiolytic effects. However, no antipsychotic effects have been reported for a large number of highly potent 5-HT3 receptor blockers. Like clozapine, ondansetron partially reverses the inhibitory effect of GABA on [35S]TBPS binding. Additivity experiments suggest that ten 5-HT3 receptor blockers tested at low concentrations preferentially block subtypes of GABAA receptors that are among those blocked by clozapine. Wiley and Porter (29) reported that MDL-72222, the most potent GABAA antagonist decribed here, partially generalizes (71%) with clozapine in rats trained to discriminate an interoceptive clozapine stimulus, but only at a dose that severly decreases responding. Tropisetron (ICS-205,930) exhibits both GABA-positive and GABA-negative effects. R-(+)-zacopride is 6-fold more potent than S-(–)-zacopride as a GABAA antagonist. We conclude that the observed antipsychotic and, possibly, anxiolytic effects of some 5-HT3 receptor blockers are due to selective antagonism of certain GABAA receptors, and not to blockade of 5-HT3 receptors. We speculate that the anxiolytic and sedative effects of clozapine and several other antipsychotic drugs may be due to selective blockade of 122 GABAA receptors which are preferentially located on certain types of GABAergic interneurons (probably parvalbumin positive). Blockade of these receptors will increase the inhibitory output of these interneurons. So far, no highly potent GABAA antagonists with clozapine-like selectivity have been identified. Such compounds may exhibit improved clozapine-like antipsychotic activity.  相似文献   

6.
Effects of methylmercury (MetHg) on the specific [3H]flunitrazepam binding were studied in rat cortical and cerebellar P2-fractions in vitro. MetHg did not affect significantly the specific [3H]flunitrazepam binding in unwashed P2-fraction but increased it marginally (by 16%) at 100 M in washed P2-fraction, in both brain regions.Muscimol (3 M), a GABAA agonist, stimulated the [3H]flunitrazepam binding by 30% to 50% depending on the brain region. In washed cerebellar membranes the enhancing response of muscimol was 10 to 14% lower after preincubation of the tissue with MetHg but in cerebral cortex MetHg did not modulate the muscimol response at all. The results indicate that Met-Hg may have region specific effects on GABAA receptors in vitro and the effect may depend on the occupational state of the GABA binding domain of the receptor complex.  相似文献   

7.
Selective blockade of a subset of GABAA receptors may be involved in the antipsychotic effects of Clozapine and several other antipsychotic drugs. Seven antipsychotic drugs, and 11 drugs classified as antidepressants that only partially reverse the inhibitory effect of 1 M GABA on [35S]TBPS binding, do not yield additive reversal when tested pairwise with Clozapine, which also only partially reverses the inhibitory effect of GABA. This suggests that all of these antipsychotic/antidepressant drugs may block a common subset of GABAA receptors. DMCM and Ro 5-4864 are also partial reversers of GABA's inhibitory effect, but they yield additive reversals when tested pairwise with the antipsychotic/antidepressant drugs, and also with each other, suggesting that DMCM, Ro 5-4864, and the antipsychotic drugs define three heterogeneous subsets of GABAA receptors, with variable overlap, depending on the drug. Several potent ligands for benzodiazepine binding sites can block the GABA inhibitory effects of DMCM and Ro 5-4864, but with different patterns: the ligands generally blocked DMCM less potently, but more completely than Ro 5-4864, Ro 5-4864 was not blocked by Flumazenil or CGS-8216, ligands that potently blocked DMCM. Nine additional antipsychotic/antidepressant drugs, as well as Clozapine, and 7 classical GABAA receptor blockers, all of which reversed GABA nearly completely, when tested at lower concentrations that only reverse 20–35%, yielded almost complete additivity when tested pairwise with DMCM or Ro 5-4864. Another convulsant benzodiazepine, KW-1937, a positional isomer of Brotizolam, fully reverses the inhibitory effect of 1 M GABA. At a lower concentration yielding about 50% reversal, KW-1937 is completely additive with DMCM, but entirely nonadditive with Ro 5-4864. The 50% reversal obtained with KW-1937 was potently blocked by Triazolam, but with a plateau similar to that obtained with Ro 5-4864. The results with KW-1937 suggest that its 50% reversal largely corresponds to the reversal obtained with Ro 5-4864, and that virtually all of the [35S]TBPS binding sites inhibited by 1 M GABA are coupled to benzodiazepine binding sites. The fraction of GABAA receptors preferentially blocked by all the antipsychotic/antidepressant drugs, roughly 25% of the [35S]TBPS binding sites inhibited with 1 M GABA, are sensitive to KW-1937, but not to DMCM or to Ro 5-4864.  相似文献   

8.
1. The bark of the root and stem of various Magnolia species has been used in Traditional Chinese Medicine to treat a variety of disorders including anxiety and nervous disturbances. The biphenolic compounds honokiol (H) and magnolol (M), the main components of the Chinese medicinal plant Magnolia officinalis, interact with GABAA receptors in rat brain in vitro. We compared the effects of H and M on [3H]muscimol (MUS) and [3H]flunitrazepam (FNM) binding using EDTA/water dialyzed rat brain membranes in a buffer containing 150 mM NaCl plus 5 mM Tris-HCl, pH 7.5 as well as [35S]t-butylbicyclophosphorothionate (TBPS) in 200 mM KBr plus 5 mM Tris-HCl, pH 7.5. H and M had similar enhancing effects on [3H]MUS as well as on [3H]FNM binding to rat brain membrane preparations, but H was 2.5 to 5.2 times more potent than M. 2. [ 3 H]FNM binding. GABA alone almost doubled [3H]FNM binding with EC50 = 450 nM and 200 nM using forebrain and cerebellar membranes, respectively. In the presence of 5 M H or M the EC50 values for GABA were decreased to 79 and 89 nM, respectively, using forebrain, and 39 and 78 nM, using cerebellar membranes. H and M potently enhanced the potentiating effect of 200 nM GABA on [3H]FNM binding with EC50 values of 0.61 M and 1.6 M using forebrain membranes, with maximal enhancements of 33 and 47%, respectively. Using cerebellar membranes, the corresponding values were 0.25 and 1.1 M, and 22 and 34%. 3. [ 3 H]MUS binding. H and M increased [3H]MUS binding to whole forebrain membranes about 3-fold with EC50 values of 6.0 and 15 M. Using cerebellar membranes, H and M increased [3H]MUS binding ~68% with EC50 values of 2.3 and 12 M, respectively. Scatchard analysis revealed that the enhancements of [3H]MUS binding were due primarily to increases in the number of binding sites (Bmax values) with no effect on the high affinity binding constants (Kd values). The enhancing effect of H and M were not additive. 4. [ 35 S]TBPS binding. H and M displaced [35S]TBPS binding from sites on whole rat forebrain membranes with IC50 values of 7.8 and 6.0 M, respectively. Using cerebellar membranes, the corresponding IC50 values were 5.3 and 4.8 M. These inhibitory effects were reversed by the potent GABAA receptor blocker R5135 (10 nM), suggesting that H and M allosterically increase the affinity of GABAA receptors for GABA and MUS by binding to sites in GABAA receptor complexes. 5. Two monophenols, the anesthetic propofol (2,6-diisopropylphenol, P) and the anti-inflammatory diflunisal (2,4-difluoro-4-hydroxy-3-biphenyl carboxylic acid, D) also enhanced [3H]MUS binding, decreased the EC50 values for GABA in enhancing [3H]FNM binding and potentiated the enhancing effect of 200 nM GABA on [3H]FNM binding, although enhancements of [3H]MUS binding for these monophenols were smaller than those for H and M, using forebrain and cerebellar membranes. The enhancing effect of P and D on [3H]MUS binding were almost completely additive. 2,2-biphenol was inactive on [3H]MUS and [3H]FNM binding. These, and other preliminary experiments, suggest that appropriate ortho (C2) and para (C4) substitution increases the GABA-potentiating activity of phenols. 6. The potentiation of GABAergic neurotransmission by H and M is probably involved in their previously reported anxiolytic and central depressant effects.  相似文献   

9.
Gabapentin, a novel anticonvulsant and analgesic, is a -aminobutyric acid (GABA) analogue but was shown initially to have little affinity at GABAA or GABAB receptors. It was recently reported to be a selective agonist at GABAB receptors containing GABAB1a-GABAB2 heterodimers, although several subsequent studies disproved that conclusion. In the present study, we examined whether gabapentin is an agonist at native GABAB receptors using a rat model of postoperative pain in vivo and periaqueductal gray (PAG) slices in vitro; PAG contains GABAB receptors, and their activation results in antinociception. An intrathecal injection of gabapentin or baclofen, a GABAB receptor agonist, induced antiallodynia in this postoperative pain model. Intrathecal injection of GABAB receptor antagonists CGP 35348 and CGP 55845 antagonized baclofen- but not gabapentin-induced antiallodynia. In ventrolateral PAG neurons, baclofen activated G-protein-coupled inwardly rectifying K+ (GIRK) channels in a manner blocked by CGP 35348 or CGP 55845. However, gabapentin displayed no effect on the membrane current. In neurons unaffected by gabapentin, baclofen activated GIRK channels through GABAB receptors. It is concluded that gabapentin is not an agonist at GABAB receptors that are functional in baclofeninduced antiallodynia in the postoperative pain model in vivo and in GIRK channel activation in ventrolateral PAG neurons in vitro.  相似文献   

10.
Pretreatment with 100 M GABA of synaptosomes purified from rat brain results in an increased uptake of the labelled neurotransmitter in subsequent incubations. The effect is blocked by a GABAB receptor antagonist, 2-hydroxy-saclofen. The effect is mimicked by baclofen and the baclofen effect is blocked by saclofen too. Lower GABA concentrations (up to 50 M) do not result in an increase of subsequent GABA uptake. Treatment of synaptosomes with 8-Br-cAMP results in a decreased GABA uptake. Since the uptake incubations were run with saturating concentrations of labelled GABA, the data indicates that GABAB receptor activation in brain synaptosomes up-regulates their GABA uptake capacity by an increase in Vmax. This mechanism appears of physiological relevance under conditions of sustained GABA release and substantial increase of its extracellular concentration.  相似文献   

11.
The distribution of GABAA receptors in the inner plexiform layer of cat retina was studied using monoclonal antibodies against the 2/3 subunits. A dense band of receptor labeling was found in the inner region of the inner plexiform layer where the rod bipolar axons terminate. Three forms of evidence indicate that the GABAA receptor labeling is on the indoleamine-accumulating, GABAergic amacrine cell that is synaptically interconnected with the rod bipolar cell terminal. (1) Electron microscopy showed that the anti-GABAA receptor antibody (62-3G1) labeled profiles that were postsynaptic to rod bipolar axons and made reciprocal synapses. (2) Indoleamine uptake (and the subsequent autofluorescence) combined with GABAA receptor immunohistochemistry showed co-localization of the two markers in half of the receptor-positive amacrine cells. (3) Double labeling demonstrated that half of the receptor-positive somata also contained GABA. These results indicate that a GABAergic amacrine cell interconnected with the rod bipolar cell, most likely the so-called A17 amacrine cell, itself bears GABAA receptors.  相似文献   

12.
Cerebellar granule cells in culture express receptors for GABA belonging to the GABAA and GABAB classes. In order to characterize the ability of the insecticide lindane to interact with these receptors cells were grown in either plain culture media or media containing 150 M THIP as this is known to influence the properties of both GABAA and GABAB receptors. It was found that lindane regardless of the culture condition inhibited evoked (40 mM K+) release of neurotransmitter ([3H]D-aspartate as label for glutamate). In naive cells both GABAA and GABAB receptor active drugs prevented the inhibitory action of lindane but in THIP treated cultures none of the GABAA and GABAB receptor active drugs had any effect on the inhibitory action of lindane. This lack of effect was not due to inability of baclofen itself to inhibit transmitter release. It is concluded that lindane dependent on the state of the GABAA and GABAB receptors is able to indirectly interfere with both GABAA and GABAB receptors. In case of the latter receptors it was shown using [3H]baclofen to label the receptors that lindane could not displace the ligand confirming that lindane is likely to exert its action at a site different from the agonist binding site.  相似文献   

13.
Gamma aminobutyric acid (GABA) is one of the main inhibitory neurotransmitters in the mammalian brain. Its effects are realized via GABAA, GABAB, and GABAC receptors. GABAA is the most abundant type of GABA receptors. It consists of six classes of subunits, , , , , , and . Acute and chronic exposures to ethanol are accompanied by changes in structure and function of GABAA receptors. These changes may be a basis for altered behavior seen in alcoholism.  相似文献   

14.
GABAA-receptors, the major synaptic targets for the neutotransmitter GABA, are gated chloride channels. By their allosteric drug-induced modulation they serve as molecular control elements through which the levels of anxiety, vigilance, muscle tension and epileptiform activity can be regulated. Despite their functional prominence, the structural requirements of fully functional GABAA-receptors are still elusive. Expression of cDNAs coding for the 1- and 1-subunits of rat brain yielded GABA-gated chloride channels which were modulated by barbiturates but displayed only agonistic responses to ligands of the benzodiazepine receptor. GABAA-receptors with fully functional benzodiazepine receptor sites were formed when the 1- and 1-subunits were coexpressed with the 2-subunit of rat brain. These receptors, however, failed to show cooperativity of GABA in gating the channel. In order to determine the subunit repertoire available for receptor assembly in different neuronal populations in vivo, the sites of subunit gene expression were (1, 2, 3, 5, 6, 1, 2, 3, 2) mapped by in situ hybridization histochemistry in brain sections. The mRNAs of the 1-, 1- and 2-subunits were co-localized e.g. in mitral cells of olfactory bulb, pyramidal cells of hippocampus as well as granule cells of dentate gyrus and cerebellum. The lack of colocalization in various other brain areas points to an extensive receptor heterogeneity. The presence of multiple GABAA-receptors in brain may contribute to synaptic plasticity, differential responsiveness of neurons to GABA and to variations in drug profiles.Special issue dedicated to Dr. Erminio Costa  相似文献   

15.
The bovine striatal dopamine D1 receptor was solubilized with a combination of sodium cholate and NaCl in the presence of phospholipids, following treatment of membranes with a dopaminergic agonist (SKF-82526-J) or antagonist (SCH-23390). The solubilized receptors were subsequently reconstituted into lipid vesicles by gel-filtration. A comparison of ligand-binding properties shows that the solubilized and reconstituted receptors bound [3H]SCH-23390 to a homogeneous site in a saturable, stereospecific and reversible manner with a Kd of 0.95 and 1.1 nM and a Bmax of 918 and 885 fmol/mg protein respectively for agonist- and antagonist-pretreated preparations. These values are very similar to those obtained for membrane-bound receptors. The competition of antagonists for [3H]SCH-23390 binding exhibited a clear D1 dopaminergic order in the reconstituted preparation obtained from either agonist or antagonist-pretreated membranes, except that (+)butaclamol was about four-fold more potent thancis-flupentixol in displacing [3H]SCH-23390 binding in preparation obtained from agonist-pretreated membranes compared to antagonist-pretreated membranes. The agonist/[3H]SCH-23390 competition studies revealed the presence of a highaffinity component of agonist binding in both the reconstituted receptor preparations. The number of high-affinity agonist binding sites, however, is 40–80% higher in reconstituted preparation obtained from antagonist-treated membrane compared to that obrained from the agonist-treated membrane. In both the preparations, 100 M guanylylimidodiphosphate (Gpp(NH)p) completely abolished the high-affinity component of agonist binding compared to partial abolition in the native membranes, indicating a close association of a G-protein with the solubilized receptors. Whether the receptor was solubilized following agonist or antagonist preincubation of the membranes, the receptor-detergent complex eluted from a steric-exclusion HPLC column with an apparent molecular size of 360,000. Preincubation of the solubilized preparations with Gpp(NH)p had virtually no effect on the elution profile suggesting a lack of guanine nucleotide-dependent dissociation of G-protein receptor complex.  相似文献   

16.
GABAA-receptors were localized in explant cultures of rat cerebellum and in dissociated primary cultures of rat cerebellar granule cells and rat cerebellar astrocytes using the monoclonal antibody bd-17 directed against the -subunit of the GABAA/benzodiazepine/chloride channel complex. At the light microscope level specific staining of GABAA-receptors was localized in various types of neurones in explant cultures of rat cerebellum using the indirect peroxidase-antiperoxidase (PAP) technique, whereas no specific staining was found in astrocytes. At the electron microscope level labeling of GABAA-receptors was observed in the plasma membrane of both the cell bodies and processes in dissociated primary cultures of cerebellar granule cells using an indirect preembedding immunogold staining technique which in contrast to the classical PAP technique allows quantitative estimations to be performed. Quantification of the labeling intensity revealed a higher concentration of GABAA-receptors per m plasma membrane in the cell bodies than in the processes. In discrete areas an extremely high density of the GABAA-receptors was observed. No specific labeling of GABAA-receptors was observed in dissociated primary cultures of cerebellar astrocytes.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

17.
Summary GABAA receptors present on rat cerebellar granule cells in culture were studied by the whole cell patch clamp technique. Muscimol appeared to be more potent than GABA itself in activating Cl currents. A benzodiazepine, flunitrazepam, only slightly (10%) potentiated the GABA action.These results support the previous suggestion that GABAA receptors containing the subunit, such as those in the cerebellum granule cells, are potently activated by muscimol. The present results also bear out the concept that GABA action on receptors containing the subunit is not potentiated by benzodiazepines.  相似文献   

18.
Oh S  Ho IK 《Neurochemical research》1999,24(12):1603-1609
Effects of continuous pentobarbital administration on binding characteristics of [3H]muscimol were examined by autoradiography, and levels of GABAA receptor 2-subunit mRNA were investigated by in situ hybridization histochemistry in the rat brain. In order to eliminate the induction of hepatic metabolism by systemic administration of pentobarbital, an i.c.v. infusion model of tolerance to and withdrawal from pentobarbital was used. An experimental model of barbiturate tolerance and withdrawal was developed using i.c.v. infusion of pentobarbital (300 g/10 l/hr for 7 days) by osmotic minipumps and abrupt withdrawal from pentobarbital. The levels of [3H]muscimol binding were elevated in cingulate of frontal cortex (46%) and granule layer of cerebellum (32%) of rats 24-hr after withdrawal from pentobarbital, while it was only elevated in cingulate (58%) of tolerant rats. The GABAA receptor 2-subunit mRNA was increased in the withdrawal rats only: in the cortex (9–14%), hippocampus (15–21%), inferior colliculus (21%), and granule layer of cerebellum (24%). These results show the involvement of GABAA receptor and its 2-subunit up-regulations in pentobarbital withdrawal rats, and suggest that the levels of [3H]muscimol binding and GABAA receptor 2-subunit mRNA are altered in a region-specific manner during pentobarbital withdrawal.  相似文献   

19.
GABAA receptors (GABAAR) mediate inhibitory neurotransmission in the human brain. Neurons modify subunit expression, cellular distribution and function of GABAAR in response to different stimuli, a process named plasticity. Human lymphocytes have a functional neuronal-like GABAergic system with GABAAR acting as inhibitors of proliferation. We here explore if receptor plasticity occurs in lymphocytes. To this end, we analyzed human T lymphocyte Jurkat cells exposed to different physiological stimuli shown to mediate plasticity in neurons: GABA, progesterone and insulin. The exposure to 100 μM GABA differently affected the expression of GABAAR subunits measured at both the mRNA and protein level, showing an increase of α1, β3, and γ2 subunits but no changes in δ subunit. Exposure of Jurkat cells to different stimuli produced different changes in subunit expression: 0.1 μM progesterone decreased δ and 0.5 μM insulin increased β3 subunits. To identify the mechanisms underlying plasticity, we evaluated the Akt pathway, which is involved in the phosphorylation of β subunits and receptor translocation to the membrane. A significant increase of phosphorylated Akt and on the expression of β3 subunit in membrane occurred in cells exposed 15 h to GABA. To determine if plastic changes are translated into functional changes, we performed whole cell recordings. After 15 h GABA-exposure, a significantly higher percentage of cells responded to GABA application when compared to 0 and 40 h exposure, thus indicating that the detected plastic changes may have a role in GABA-modulated lymphocyte function.  相似文献   

20.
[35S]t-Butylbicyclophosphorothionate ([35S]TBPS), a convulsant site ligand of GABAA receptors, was used in autoradiography with rat brain sections to test suggested receptor subtype-selective actions of antiepileptics phenytoin, carbamazepine and loreclezole on native GABAA receptors. At maximal 100 M concentration, both phenytoin and carbamazepine decreased [35S]TBPS binding only by 20%, indicating that their low potency and efficacy prevents their use as 1 subunit-identifying compounds. Ten M loreclezole did not affect the binding, but a further increase in loreclezole concentration strongly decreased it. The action of loreclezole, assumed to reflect 2/3 subunit-containing receptors, varied from brain region to region, but the effects were unrelated to the regional expression profiles of subunit variants. We conclude that in autoradiographic [35S]TBPS binding assay neither carbamazepine, phenytoin nor loreclezole are useful tools in characterizing brain regional heterogeneity of GABAA receptors in rats and that only loreclezole exhibits high, pharmacologically relevant efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号