首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous studies, structurally similar compounds of ascochlorin and ascofuranone exhibited anti-inflammatory activity. Neural inflammation plays a significant role in the commence and advancement of neurodegenerative diseases. It is not known whether 4-O-carboxymethylascochlorin (AS-6) regulates the initial stage of inflammatory responses at the cellular level in BV2 microglia cells. We here investigated the anti-inflammatory effects of AS-6 treatment in microglia cells with the microglial protection in neurons. We found that the lipopolysaccharide (LPS)-stimulated production of nitric oxide, a main regulator of inflammation, is suppressed by AS-6 in BV2 microglial cells. In addition, AS-6 dose-dependently suppressed the increase in COX-2 protein and messenger RNA levels in LPS-stimulated BV2 cells. Moreover, AS-6 inhibited the expression and secretion of proinflammatory cytokines in BV2 microglial cells. At the intracellular level, AS-6 inhibited LPS-activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in BV2 microglial cells. AS-6 negatively affected mitogen-activated protein kinases (MAPK) and Akt phosphorylation: Phosphorylated forms of ERK, JNK, p38, and Akt decreased. To check whether AS-6 protects against inflammatory inducer-mediated neurotoxicity, neuronal SH-SY5Y cells were coincubated with BV2 cells in conditioned medium. AS-6 exerted a neuroprotective effect by suppressing microglial activation by LPS or amyloid-β peptide. AS-6 is a promising suppressor of inflammatory responses in LPS-induced BV2 cells by attenuating NF-κB and MAPKs signaling. AS-6 protected against microglial-mediated neurotoxicity in SH-SY5Y and BV2 cocultured cells from LPS–induced neuroinflammation and death via inhibiting MAPK, NF-κB, and Akt pathways.  相似文献   

2.
Chronic activation of microglial cells endangers neuronal survival through the release of various proinflammatory and neurotoxic factors. Paeoniflorin (PF), a water-soluble monoterpene glycoside found in the root of Paeonia lactiflora Pall, has a wide range of pharmacological functions, such as anti-oxidant, anti-inflammatory, and anti-cancer effects. Neuroprotective potential of PF has also been demonstrated in animal models of neuropathologies. Here, we have examined the efficacy of PF in the repression of inflammation-induced neurotoxicity and microglial inflammatory response. In organotypic hippocampal slice cultures, PF significantly blocked lipopolysaccharide (LPS)-induced hippocampal cell death and productions of nitric oxide (NO) and interleukin (IL)-1β. PF also inhibited the LPS-stimulated productions of NO, tumor necrosis factor-α, and IL-1β from primary microglial cells. These results suggest that PF possesses neuroprotective activity by reducing the production of proinflammatory factors from activated microglial cells.  相似文献   

3.
Tanshinone I (TsI) is an important lipophilic diterpene extracted from Danshen (Radix Salvia miltiorrhizae) and has been used in Asia for the treatment of cerebrovascular diseases such as ischemic stroke. In this study, we examined the neuroprotective effect of TsI against ischemic damage and its neuroprotective mechanism in the gerbil hippocampal CA1 region (CA1) induced by 5 min of transient global cerebral ischemia. Pre-treatment with TsI protected pyramidal neurons from ischemic damage in the stratum pyramidale (SP) of the CA1 after ischemia–reperfusion. The pre-treatment with TsI increased the immunoreactivities and protein levels of anti-inflammatory cytokines [interleukin (IL)-4 and IL-13] in the TsI-treated-sham-operated-groups compared with those in the vehicle-treated-sham-operated-groups; however, the treatment did not increase the immunoreactivities and protein levels of pro-inflammatory cytokines (IL-2 and tumor necrosis factor-α). On the other hand, in the TsI-treated-ischemia-operated-groups, the immunoreactivities and protein levels of all the cytokines were maintained in the SP of the CA1 after transient cerebral ischemia. In addition, we examined that IL-4 injection into the lateral ventricle did not protect pyramidal neurons from ischemic damage. In conclusion, these findings indicate that the pre-treatment with TsI can protect against ischemia-induced neuronal death in the CA1 via the increase or maintenance of endogenous inflammatory cytokines, and exogenous IL-4 does not protect against ischemic damage.  相似文献   

4.
5.
Ginkgolide and bilobalide are major trilactone constituent of Ginkgo biloba leaves and have been shown to exert powerful neuroprotective properties. The aims of this study were to observe the inhibitory effects of ginkgolide and bilobalide on the activation of microglial cells induced by oxygen–glucose deprivation and reoxygenation (OGD/R) and the specific mechanisms by which these effects are mediated. For detecting whether ginkgolide and bilobalide increased cell viability in a dose-dependent manner, BV2 cells were subjected to oxygen–glucose deprivation for 4 h followed by 3 h reoxygenation with various concentrations of drugs (6.25, 12.5, 25, 50, and 100 μg/ml). The extent of apoptosis effect of OGD/R with or without ginkgolide and bilobalide treatment were also measured by Annexin V-FITC/PI staining. Similarly, the levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-8, and IL-10 were detected using a specific Bio-Plex Pro? Reagent Kit. The effects of ginkgolide and bilobalide on protein levels of TLR2/4, MyD88, p-TAK1, p-IKKβ, p-IkBα, NF-κB p65, Bcl-2, Bax, Bak, RIP3, cleaved-Caspase-3, cleaved PARP-1 and cellular localization of NF-κB p65 were evaluated by Western blot and double-labeled immunofluorescence staining, respectively. OGD/R significantly decreased the cell viability and increased the release of IL-1β, IL-6, IL-8, IL-10, TNF-α in BV2 microglia cells; these effects were suppressed by ginkgolide and bilobalide. Meanwhile, ginkgolide and bilobalide also attenuated the OGD/R-induced increases in TLR2, TLR4, MyD88, Bak, RIP3 levels and reversed cleaved caspase-3/caspase-3, Bax/Bcl-2 and cleaved PARP-1/PARP-1 ratio. Furthermore, ginkgolide and bilobalide also downregulated p-TAK1, p-IkBα, and p-IKKβ and inhibited the OGD/R-induced transfer of NF-κB p65 from cytoplasm to nucleus in BV2 microglia cells. The results showed that ginkgolide and bilobalide can inhibit OGD/R-induced production of inflammatory factors in BV2 microglia cells by regulating the TLRs/MyD88/NF-κB signaling pathways and attenuating inflammatory response. The possible mechanism of anti-inflammatory and neuroprotective effects of ginkgolides results from the synergistic reaction among each monomer constituents.  相似文献   

6.
We previously reported that the dried peel powder of Citrus kawachiensis, one of the citrus products of Ehime, Japan, exerted anti-inflammatory effects in the brain of a lipopolysaccharide-injected systemic inflammation animal model. Inflammation is one of the main mechanisms underlying aging in the brain; therefore, we herein evaluated the anti-inflammatory and other effects of the dried peel powder of C. kawachiensis in the senescence-accelerated mouse-prone 8 (SAMP8) model. The C. kawachiensis treatment inhibited microglial activation in the hippocampus, the hyper-phosphorylation of tau at 231 of threonine in hippocampal neurons, and ameliorated the suppression of neurogenesis in the dentate gyrus of the hippocampus. These results suggest that the dried peel powder of C. kawachiensis exert anti-inflammatory and neuroprotective effects.  相似文献   

7.
Suk K  Kim SY  Leem K  Kim YO  Park SY  Hur J  Baek J  Lee KJ  Zheng HZ  Kim H 《Life sciences》2002,70(21):2467-2480
In traditional Oriental medicine, Uncaria rhynchophylla has been used to lower blood pressure and to relieve various neurological symptoms. However, scientific evidence related to its effectiveness or precise modes of action has not been available. Thus, in the current study, we evaluated neuroprotective effects of U. rhynchophylla after transient global ischemia using 4-vessel occlusion model in rats. Methanol extract of U. rhynchophylla administered intraperitoneally (100-1000 mg/kg at 0 and 90 min after reperfusion) significantly protected hippocampal CA1 neurons against 10 min transient forebrain ischemia. Measurement of neuronal cell density in CA1 region at 7 days after ischemia by Nissl staining revealed more than 70% protection in U. rhynchophylla-treated rats compared to saline-treated animals. In U. rhynchophylla-treated animals, induction of cyclooxygenase-2 in hippocampus at 24 hr after ischemia was significantly inhibited at both mRNA and protein levels. Furthermore, U. rhynchophylla extract inhibited TNF-alpha and nitric oxide production in BV-2 mouse microglial cells in vitro. These anti-inflammatory actions of U. rhynchophylla extract may contribute to its neuroprotective effects.  相似文献   

8.
Parkinson's disease (PD) is neurodegenerative dyskinesia characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Although neuroinflammation is one of the pathological features of PD, its mechanism of promoting PD is still not fully understood. Recently, the microRNA (miR) is considered to play a critical regulatory role in inflammatory responses. In this study, we examined the anti-inflammatory activity, antineuronal injury, and the underlying target of miR-190 with MPTP-induced PD mouse model and BV2 cells. The results showed that miR-190 is downregulated in lipopolysaccharide (LPS)-induced BV2 cells; however, when the miR-190 overexpressed, the expression of proinflammatory mediators, such as iNOS, IL-6, TNF-α, and TGF-β1, were inhibited and the anti-inflammatory mediator such IL-10 was increased. In addition, we predicted the potential target of miR-190 to be Nlrp3 and verified by luciferase reporter assay. The results also showed that Nlrp3 was upregulated in LPS-induced BV2 cells, whereas knockdown of Nlrp3 inhibited the LPS-induced inflammatory response in BV2 cells. Furthermore, upregulation of miR-190 or knockdown of Nlrp3 inhibited LPS-induced apoptosis in BV2 cells. However, the apoptosis inhibition effect of miR-190 was abrogated by overexpression of Nlrp3. Finally, upregulation of miR-190 inhibited the activation of microglial cells and inflammation and attenuated the tyrosine hydroxylase loss in SNpc in MPTP-induced PD mice. In conclusion, we demonstrated that miR-190 alleviates neuronal damage and inhibits inflammation via negatively regulating the expression and activation of Nlrp3 in MPTP-induced PD mouse model.  相似文献   

9.
β-Glucan was recently shown to have the ability to enhance and stimulate the immune system in humans, but little is known about its the anti-inflammatory effects. We investigated the effect of β-glucan on the production of tumor necrosis factor-alpha (TNF-α), a major pro-inflammatory mediator, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. β-Glucan decreased the production and expression of TNF-α. In addition, it blocked LPS-stimulated activation of nuclear factor kappa B (NF-κB). Hence β-glucan might suppress LPS-stimulated TNF-α production by inhibiting NF-κB in BV2 microglial cells.  相似文献   

10.
BackgroundNeuroinflammation plays a pivotal role in the acute progression of cerebral ischemia/reperfusion injury (I/RI). We previously reported that genistein-3′-sodium sulfonate (GSS), a derivative from the extract of the phytoestrogen genistein (Gen), protects cortical neurons against focal cerebral ischemia. However, the molecular mechanism underlying the neuroprotective effects exerted by GSS remains unclear.PurposeThe present study focused on the anti-inflammatory effects of GSS following I/RI in rats.Study designRandomized controlled trial.MethodsThe tMCAO rat model and LPS-stimulated BV2 in vitro model were used. Longa's scare was used to observe neurological function. TTC staining and Nissl staining were used to evaluate brain injury. ELISA, qRT-PCR, Western blotting and immunofluorescent staining methods were used to detect cytokine concentration, mRNA level, protein expression and location.ResultsGSS treatment improves neurological function, reduces the volume of cerebral infarction, attenuates proinflammatory cytokines and inactivates the phosphorylation of JAK2 and STAT3 in I/RI rats. Furthermore, GSS increased the expression of α7nAChR. More importantly, the neuroprotective, anti-inflammatory and inhibiting JAK2/STAT3 signaling pathway effects of GSS were counteracted in the presence of alpha-bungarotoxin (α-BTX), an α7nAChR inhibitor, suggesting that α7nAChR is a potential target associated with the anti-inflammatory effects of GSS in the I/RI rats. GSS also inhibited BV2 cells from releasing IL-1β via the α7nAChR pathway after LPS stimulation.ConclusionGSS protects against cerebral I/RI through the expression of α7nAChR and inhibition of the JAK2/STAT3 pathway. Our findings provide evidence for the role of the cholinergic anti-inflammatory pathway in neuroinflammation and uncover a potential novel mechanism for GSS treatment in ischemic stroke. The downstream signals of GSS, α7nAChR- JAK2/STAT3 could also be potential targets for the treatment of I/RI.  相似文献   

11.
Infrasound, a kind of common environmental noise and a major contributor of vibroacoustic disease, can induce the central nervous system (CNS) damage. However, no relevant anti-infrasound drugs have been reported yet. Our recent studies have shown that infrasound resulted in excessive microglial activation rapidly and sequential inflammation, revealing a potential role of microglia in infrasound-induced CNS damage. Epigallocatechin gallate (EGCG), a major bioactive component in green tea, has the capacity of protecting against various neurodegenerative diseases via an anti-inflammatory mechanism. However, it is still unknown to date whether EGCG acts on infrasound-induced microglial activation and neuronal damage. We showed that, after 1-, 2- or 5-day exposure of rats to 16 Hz, 130 dB infrasound (2 h/day), EGCG significantly inhibited infrasound-induced microglial activation in rat hippocampal region, evidenced by reduced expressions of Iba-1 (a marker for microglia) and proinflammatory cytokines (IL-1β, IL-6, IL-18 and TNF-α). Moreover, infrasound-induced neuronal apoptosis in rat hippocampi was significantly suppressed by EGCG. EGCG also inhibited infrasound-induced activation of primary microglia in vitro and decreased the levels of proinflammatory cytokines in the supernatants of microglial culture, which were toxic to cultured neurons. Furthermore, EGCG attenuated infrasound-induced increases in nuclear NF-κB p65 and phosphorylated IκBα, and ameliorated infrasound-induced decrease in IκB in microglia. Therefore, our study provides the first evidence that EGCG acts against infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation through a potential NF-κB pathway-related mechanism, suggesting that EGCG can be used as a promising drug for the treatment of infrasound-induced CNS damage.  相似文献   

12.
Paradols are non-pungent and biotransformed metabolites of shogaols and reduce inflammatory responses as well as oxidative stress as shogaols. Recently, shogaol has been noted to possess therapeutic potential against several central nervous system (CNS) disorders, including cerebral ischemia, by reducing neuroinflammation in microglia. Therefore, paradol could be used to improve neuroinflammation-associated CNS disorders. Here, we synthesized paradol derivatives (2- to 10-paradols). Through the initial screening for anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated BV2 microglia, 6-paradol was chosen to be the most effective compound without cytotoxicity. Pretreatment with 6-paradol reduced neuroinflammatory responses in LPS-stimulated BV2 microglia by a concentration-dependent manner, which includes reduced NO production by inhibiting iNOS upregulation and lowered secretion of proinflammatory cytokines (IL-6 and TNF-α). To pursue whether the beneficial in vitro effects of 6-paradol leads towards in vivo therapeutic effects on transient focal cerebral ischemia characterized by neuroinflammation, we employed middle cerebral artery occlusion (MCAO)/reperfusion (M/R). Administration of 6-paradol immediately after reperfusion significantly reduced brain damage in M/R-challenged mice as assessed by brain infarction, neurological deficit, and neural cell survival and death. Furthermore, as observed in cultured microglia, 6-paradol administration markedly reduced neuroinflammation in M/R-challenged brains by attenuating microglial activation and reducing the number of cells expressing iNOS and TNF-α, both of which are known to be produced in microglia following M/R challenge. Collectively, this study provides evidences that 6-paradol effectively protects brain after cerebral ischemia, likely by attenuating neuroinflammation in microglia, suggesting it as a potential therapeutic agent to treat cerebral ischemia.  相似文献   

13.
Genipin, an aglycon of geniposide, has been reported to have anti-inflammatory effect. However, the anti-inflammatory activity of genipin on LPS-stimulated BV2 microglial cells has not been reported. In this study, we investigated the molecular mechanisms responsible for the anti-inflammatory activity of genipin both in vivo and in vitro. The levels of TNF-α, IL-1β, NO and PGE2 were detected by ELISA. The expression of Nrf2, HO-1, and NF-κB were detected by western blot analysis. In vivo, genipin significantly attenuated LPS-induced memory deficit in the Morris water maze and passive avoidance tasks. Genipin also inhibited LPS-induced TNF-α and IL-1β expression in brain tissues. In vitro, our results showed that genipin inhibited LPS-induced TNF-α, IL-1β, NO and PGE2 production in a concentration-dependent manner. Genipin also suppressed LPS-induced NF-κB activation. In addition, the expression of Nrf2 and HO-1 were up-regulated by treatment of genipin. Furthermore, the inhibition of genipin on inflammatory mediator production was attenuated by transfection with Nrf2 siRNA. In conclusion, genipin inhibited LPS-induced inflammatory response by activating Nrf2 signaling pathway in BV2 microglia.  相似文献   

14.
Adiponectin, an adipose tissue secreted protein, exhibits anti-inflammatory and antiatherogenic properties. We examined the effects of the globular and full-length adiponectin on cytokine production in macrophages derived from Coronary Artery Disease (CAD) patients and control individuals. Adiponectin's effects in human macrophages upon lipopolysaccharide (LPS) treatment were also examined. Full length adiponectin acted differently on TNF-α and IL-6 production by upregulating TNF-α and IL-6 protein production, but not their mRNA expression. Additionally, full length adiponectin was unable to abrogate LPS proinflammatory effect in TNF-α and IL-6 mRNA expression in CAD and NON-CAD macrophages. In contrast, globular adiponectin appeared to have proinflammatory properties by potently upregulating TNF-α and IL-6 mRNA and protein secretion in human macrophages while subsequently rendered cells resistant to further proinflammatory stimuli. Moreover, both forms of adiponectin powerfully suppressed scavenger MSR-AI mRNA expression and augmented IL-10 protein release, both occurring independently of the presence of LPS or CAD. These data indicate that adiponectin could potentially protect human macrophages via the elevated IL-10 secretion and the suppression of MSR-AI expression. It can also be protective in CAD patients since the reduced adiponectin-induced IL-6 release in CAD macrophages compared to controls, could be beneficial in the development of inflammation related atherosclerosis.  相似文献   

15.
Ding H  Zhou M  Zhang RP  Xu SL 《生理学报》2010,62(6):547-554
Abundant evidence has suggested that neuroinflammation participates in the pathogenesis of Parkinson's disease (PD). The emerging evidence has supported that microglia may play key roles in the progressive neurodegeneration in PD and might be a promising therapeutic target. Ganoderma lucidum (GL), a traditional Chinese medicinal herb, has been shown potential neuroprotective effect in our clinical trials that lead us to speculate that it might possess potent anti-inflammatory and immunomodulating properties. To test this hypothesis, the present study investigated the potential neuroprotective effect of GL and underlying mechanism through inhibiting microglial activation using co-cultures of dopaminergic neurons and microglia. The cultures of microglia or MES23.5 cells alone or together were treated for 24 h with lipopolysaccharide (LPS, 0.25 μg/mL) as a positive control, GL extracts (50-400 μg/mL) or MES23.5 cell membrane fragments (150 μg/mL) were used in treatment groups. Microglia activation, microglia-derived harmful factors and [(3)H]dopamine ([(3)H]DA) uptake of MES23.5 cells were analyzed. The results showed that microglia were activated by LPS and MPP(+)-treated MES23.5 cell membrane fragments, respectively. Meanwhile, GL extracts significantly prevented the production of microglia-derived proinflammatory and cytotoxic factors, including nitric oxide, tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β), in a dose-dependent manner and down-regulated the TNF-α and IL-1β expressions on mRNA level. In addition, GL extracts antagonized the reduction of [(3)H]DA uptake induced by MPP(+) and microglial activation. In conclusion, these results suggest that GL may be a promising agent for the treatment of PD through anti-inflammation.  相似文献   

16.
We previously reported that the dried peel powder of Citrus kawachiensis exerted anti-inflammatory effects in the brain in several animal models. Hyperglycemia induces inflammation and oxidative stress and causes massive damage in the brain; therefore, we herein examined the anti-inflammatory and other effects of the dried peel powder of C. kawachiensis in the streptozotocin-induced hyperglycemia mice model and in the type 2 diabetic db/db mice model. The C. kawachiensis administration inhibited microglial activation in the hippocampus in the streptozotocin-injected mice. Moreover, The C. kawachiensis treatment inhibited astroglial activation in the hippocampus and the hyperphosphorylation of tau at 231 of threonine and 396 of serine in hippocampal neurons, and also relieved the suppression of neurogenesis in the dentate gyrus of the hippocampus in the db/db mice. It was suggested that the dried peel powder of C. kawachiensis exerts anti-inflammatory and neuroprotective effects in the brain.  相似文献   

17.
18.
Ischemic brain injury and epilepsy are common neurodegenerative diseases caused by excitotoxicity. Their pathogenesis includes microglial production of inflammatory cytokines. Our studies were designed to examine whether a growth compromised HSV-2 mutant (ΔRR) prevents excitotoxic injury through modulation of microglial responses by the anti-apoptotic HSV-2 protein ICP10PK. EOC2 and EOC20 microglial cells, which are differentially activated, were infected with ΔRR or the ICP10PK deleted virus (ΔPK) and examined for virus-induced neuroprotective activity. Both cell lines were non-permissive for virus growth, but expressed ICP10PK (ΔRR) or the PK deleted ICP10 protein p95 (ΔPK). Conditioned medium (CM) from ΔRR-, but not ΔPK-infected cells prevented N-methyl-D-aspartate (NMDA)-induced apoptosis of primary hippocampal cultures, as determined by TUNEL and caspase-3 activation (76.9 ± 5.3% neuroprotection). Neuroprotection was associated with inhibition of TNF-α and RANTES and production of IL-10. The CM from ΔPK-infected EOC2 and EOC20 cells did not contain IL-10, but it contained TNF-α and RANTES. IL-10 neutralization significantly (p < 0.01) decreased, but did not abrogate, the neuroprotective activity of the CM from ΔRR-infected microglial cultures indicating that ICP10PK modulates the neuronal-microglial axis, also through induction of various microglial neuroprotective factors. Rats given ΔRR (but not ΔPK) by intranasal inoculation were protected from kainic acid (KA)-induced seizures and neuronal loss in the CA1 hippocampal fields. Protection was associated with a significant (p < 0.001) increase in the numbers of IL-10+ microglia (CD11b+) as compared to ΔPK-treated animals. ΔRR is a promising vaccination/therapy platform for neurodegeneration through its pro-survival functions in neurons as well as microglia modulation.  相似文献   

19.
Neuron-microglia co-cultures treated with pro-inflammatory agents are a useful tool to study neuroinflammation in vitro, where to test the potential neuroprotective effect of anti-inflammatory compounds. However, a great diversity of experimental conditions can be found in the literature, making difficult to select the working conditions when considering this approach for the first time. We compared the use of neuron-primary microglia and neuron-BV2 cells (a microglial cell line) co-cultures, using different neuron:microglia ratios, treatments and time post-treatment to induce glial activation and derived neurotoxicity. We show that each model requires different experimental conditions, but that both neuron-BV2 and neuron-primary microglia LPS/IFN-γ-treated co-cultures are good to study the potential neuroprotective effect of anti-inflammatory agents. The contribution of different pro-inflammatory parameters in the neurotoxicity induced by reactive microglial cells was determined. IL-10 pre-treatment completely inhibited LPS/IFN-γ-induced TNF-α and IL-6 release, and COX-2 expression both in BV2 and primary microglial cultures, but not NO production and iNOS expression. However, LPS/IFN-γ induced neurotoxicity was not inhibited in IL-10 pre-treated co-cultures. The inhibition of NO production using the specific iNOS inhibitor 1400 W totally abolished the neurotoxic effect of LPS/IFN-γ, suggesting a major role for NO in the neurotoxic effect of activated microglia. Consequently, among the anti-inflammatory agents, special attention should be paid to compounds that inhibit NO production.  相似文献   

20.
Blockers of the renin-angiotensin-aldosterone system (RAAS) ameliorate cognitive deficits and some aspects of brain injury after whole-brain irradiation. We investigated whether treatment with the angiotensin II type 1 receptor antagonist L-158,809 at a dose that protects cognitive function after fractionated whole-brain irradiation reduced radiation-induced neuroinflammation and changes in hippocampal neurogenesis, well-characterized effects that are associated with radiation-induced brain injury. Male F344 rats received L-158,809 before, during and after a single 10-Gy dose of radiation. Expression of cytokines, angiotensin II receptors and angiotensin-converting enzyme 2 was evaluated by real-time PCR 24 h, 1 week and 12 weeks after irradiation. At the latter times, microglial density and proliferating and activated microglia were analyzed in the dentate gyrus of the hippocampus. Cell proliferation and neurogenesis were also quantified in the dentate subgranular zone. L-158,809 treatment modestly increased mRNA expression for Ang II receptors and TNF-α but had no effect on radiation-induced effects on hippocampal microglia or neurogenesis. Thus, although L-158,809 ameliorates cognitive deficits after whole-brain irradiation, the drug did not mitigate the neuroinflammatory microglial response or rescue neurogenesis. Additional studies are required to elucidate other mechanisms of normal tissue injury that may be modulated by RAAS blockers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号