首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteases of the nematode Caenorhabditis elegans   总被引:3,自引:0,他引:3  
Crude homogenates of the soil nematode Caenorhabditis elegans exhibit strong proteolytic activity at acid pH. Several kinds of enzyme account for much of this activity: cathepsin D, a carboxyl protease which is inhibited by pepstatin and optimally active toward hemoglobin at pH 3; at least two isoelectrically distinct thiol proteases (cathepsins Ce1 and Ce2) which are inhibited by leupeptin and optimally active toward Z-Phe-Arg-7-amino-4-methylcoumarin amide at pH 5; and a thiol-independent leupeptin-insensitive protease (cathepsin Ce3) with optimal activity toward casein at pH 5.5. Cathepsin D is quantitatively most significant for digestion of macromolecular substrates in vitro, since proteolysis is inhibited greater than 95% by pepstatin. Cathepsin D and the leupeptin-sensitive proteases act synergistically, but the relative contribution of the leupeptin-sensitive proteases depends upon the protein substrate.  相似文献   

2.
The structural and functional aspects of ervatamin B were studied in solution. Ervatamin B belongs to the alpha + beta class of proteins. The intrinsic fluorescence emission maximum of the enzyme was at 350 nm under neutral conditions, and at 355 nm under denaturing conditions. Between pH 1.0- 2.5 the enzyme exists in a partially unfolded state with minimum or no tertiary structure, and no proteolytic activity. At still lower pH, the enzyme regains substantial secondary structure, which is predominantly a beta-sheet conformation and shows a strong binding to 8-anilino-1- napthalene-sulfonic acid (ANS). In the presence of salt, the enzyme attains a similar state directly from the native state. Under neutral conditions, the enzyme was stable in urea, while the guanidine hydrochloride (GuHCl) induced equilibrium unfolding was cooperative. The GuHCl induced unfolding transition curves at pH 3.0 and 4.0 were non-coincidental, indicating the presence of intermediates in the unfolding pathway. This was substantiated by strong ANS binding that was observed at low concentrations of GuHCl at both pH 3.0 and 4.0. The urea induced transition curves at pH 3.0 were, however, coincidental, but non-cooperative. This indicates that the different structural units of the enzyme unfold in steps through intermediates. This observation is further supported by two emission maxima in ANS binding assay during urea denaturation. Hence, denaturant induced equilibrium unfolding pathway of ervatamin B, which differs from the acid induced unfolding pathway, is not a simple two-state transition but involves intermediates which probably accumulate at different stages of protein folding and hence adds a new dimension to the unfolding pathway of plant proteases of the papain superfamily.  相似文献   

3.
Abstract The effects of some physico-chemical parameters on production of extracellular α-L-arabinofuranosidase by Aspergillus nidulans were examined. Highest levels of α-L-arabinofuranosidase were generated with cultures grown on 1% (w/v) purified beet pulp arabinan at 30°C and at an initial pH of 7.0. The enzyme was shown to be very sensitive to the action of proteases. Zymogram overlay of a protein profile obtained by SDS-PAGE revealed the occurrence of a band ( M r 36 000) exhibiting α-L-arabinofuranosidase activity. The isoelectric pH of the enzyme lay near 4.3. Temperature and pH optima for the activity of crude α-L-arabinofuranosidase preparations were 55°C and 5.5, respectively. Enzyme activity was greatly reduced by thiol reagents such as Hg2+ and p -hydroxymercuribenzoate and showed a K m value of 2.7 mM on p -nitrophenyl α-L-arabinofuranoside as substrate.  相似文献   

4.
We have utilized iminodiacetate (IDA) gels with immobilized Zn2+, Cu2+ and Ni2+ ions to evaluate the metal binding properties of uterine estrogen receptor proteins. Soluble (cytosol) receptors labeled with [3H]estradiol were analyzed by immobilized metal affinity chromatography (IMAC) before as well as after (1) 3 M urea-induced transformation to the DNA-binding form, and (2) limited trypsin digestion to separate the steroid- and DNA-binding domains. Imidazole (2-200 mM) affinity elution and pH-dependent (pH 7-3.6) elution techniques were both evaluated and found to resolve several receptor isoforms differentially in both the presence and absence of 3 M urea. Individual receptor forms exhibited various affinities for immobilized Zn2+, Cu2+ and Ni2+ ions, but all intact receptor forms were strongly adsorbed to each of the immobilized metals (Ni2+ greater than Cu2+ much greater than Zn2+) at neutral pH. Generally, similar results were obtained with IDA-Cu2+ and IDA-Ni2+ in the absence of urea. Receptors were tightly bound and not eluted before 100 mM imidazole or pH 3.6. Different results were obtained using IDA-Zn2+; at least four receptor isoforms were resolved on IDA-Zn2+. Receptor-metal interaction heterogeneity and affinity for IDA-Zn2+ and IDA-Cu2+, but not IDA-Ni2+, were substantially decreased in the presence of 3 M urea. The receptor isoforms identified and separated by IDA-Zn2+ chromatography were not separable using high-performance size-exclusion chromatography, density gradient centrifugation, chromatofocusing or DNA-affinity chromatography. The affinity of trypsin-generated (mero)receptor forms for each of the immobilized metals was decreased relative to that of intact receptor. High-affinity metal-binding sites were mapped to the DNA-binding domain, but at least one of the metal-binding sites is located on the steroid-binding domain. Recovery of all receptor forms from the immobilized metal ion columns was routinely above 90%. These results demonstrate the differential utility of various immobilized metals to characterize and separate individual receptor isoforms and domain structures. Receptor-metal interactions warrant further investigation to establish their effects on receptor structure/function relationships. In addition to the biological implications, recognition of estrogen receptor proteins as metal-binding proteins suggests new and potentially powerful receptor immobilization and purification regimes previously unexplored by those in this field.  相似文献   

5.
Two specific alkaline phosphatase forms were identified in the integument of wild-type Ceratitis capitata during transition of larvae to pupae. The separation was achieved by DEAE-cellulose chromatography; alkaline phosphatase 1 and alkaline phosphatase 2 were eluted in 0.1 and 0.4 M KCl, respectively. Both isoenzymes have a molecular weight of approximately 180,000. The pH curve reveals two peaks for both alkaline phosphatases: one at 9.4 and the other at 11.0. The two isoenzymes at both pH optima catalyze the hydrolysis of phosphotyrosine and beta-glycerophosphate, but not phosphoserine, phosphothreonine, ATP, or AMP. However, at pH 9.4, alkaline phosphatase 1 is more effective than ALPase 2 and exhibits a preference for phosphotyrosine. The divalent cations Mn2+, Mg2+, and Ba2+ activate the enzymes, while Cu2+ and Zn2+ are inhibitors for both isoenzymes. Both isoenzymes are inactivated by EDTA. The effect of amino acids on enzyme activity was also tested. Alkaline phosphatase 1 is inhibited by L-tyrosine, while alkaline phosphatase 2 is unaffected. L-Phenylalanine has no effect on either isoenzyme. Both isoenzymes are inhibited by urea and 2-mercaptoethanol. Simultaneous addition of urea and 2-mercaptoethanol reveals that ALPase 1 is more sensitive to these inhibitors than ALPase 2.  相似文献   

6.
Benzofuroxan reacts with the catalytic-site thiol group of actinidin (EC 3.4.22.14, the cysteine proteinase from Actinidia chinensis) to produce stoicheiometric amounts of the chromophoric reduction product, o-benzoquinone dioxime, and of a catalytically inactive derivative of actinidin that is devoid of thiol and that is assumed to contain, initially at least, the sulphenic acid of cysteine-25. A similar result applies also to papain (EC 3.4.22.2). The rate of o-benzoquinone dioxime formation is neither increased by inclusion of 2-mercaptoethanol or hydroxylamine in the reaction mixture nor decreased by changing the solvent from H2O to 2H2O. The change of solvent was shown to be without effect also on the rate of reaction of benzofuroxan with papain. These results suggest that the reactions of benzofuroxan with both actinidin and papain involve rate-determining attack of the catalytic-site thiol group to produce an intermediate adduct that then reacts rapidly with water to form enzyme sulphenic acid and o-benzoquinone dioxime. The pH-dependence of the second-order rate constant for the reaction of benzofuroxan with actinidin was determined in the pH range 4.3-10.2. In marked contrast with the analogous reaction of papain (reported by Shipton & Brocklehurst [(1977) Biochem. J. 167, 799-810] ) the pH-k profile for the actinidin reaction clearly contains a sigmoidal component with pKa 5.5, in which k increases with decreasing pH. These data together with the molecular pKa values for S-/ImH+ ion-pair formation and decomposition (3.0 and 9.6) suggest that the combined nucleophilic-electrophilic reactivity of the ion-pair of actinidin might be controlled by the state of ionization of another ionizing group, associated with the molecular pKa of 5.5. The pH-dependence of k for the reaction of actinidin with benzofuroxan at 25 degrees C at I 0.1 in aqueous buffers containing 6.7% (v/v) ethanol is probably adequately described by: k = k1/(1 + [H+]/KI + KII/[H+]) + k2/(1 + [H+]/KII + KIII/ [H+] + k3/(1 + [H+]/KIII) in which kI = 2.55 M -1 X s -1, k2 = 1.35 M -1, k3 = 0.93 M -1 X s -1, pKI = 3.0, pKII = 5.5 and pKIII = 9.6. By contrast, the analogous reaction of papain may be described by the same equation but with kI = 0, k2 = 2.2 M -1 X s -1, k3 = 1.3 M -1 X s -1, pKII = 3.6 and pKIII = 9.0.  相似文献   

7.
Ervatamin A, a cysteine proteases from Ervatamia coronaria, has been used as model system to examine structure-function relationship by equilibrium unfolding methods. Ervatamin A belongs to alpha+beta class of proteins and exhibit stability towards temperature and chemical denaturants. Acid induced unfolding of ervatamin A was incomplete with respect to the structural content of the enzyme. Between pH 0.5 and 2.0, the enzyme is predominantly in beta-sheet conformation and shows a strong ANS binding suggesting the existence of a partially unfolded intermediate state (I(A) state). Surprisingly, high concentrations of GuHCl required to unfold this state and the transition mid points GuHCl induced unfolding curves are significantly higher. GuHCl induced unfolding of ervatamin A at pH 3.0 as well as at pH 4.0 is complex and cannot be satisfactorily fit to a two-state model for unfolding. Besides, a strong ANS binding to the protein is observed at low concentration of GuHCl, indicating the presence of intermediate in the unfolding pathway. On the other hand, even in the presence of urea (8M) the enzyme retains all the activity as well as structural parameters at neutral pH. However, the protein is susceptible to urea unfolding at pH 3.0 and below. Urea induced unfolding of ervatamin A at pH 3.0 is cooperative and the transitions curves obtained by different probes are and non-coincidental. Temperature denaturation of ervatamin A in I(A) state is non-cooperative, contrary to the cooperativity seen with native protein, suggesting the presence of two parts in the molecular structure of ervatamin A may be domains, with different stability that unfolds in steps. Careful inspection of biophysical properties of intermediate states populated in urea and GuHCl (I(UG) state) induced unfolding suggests all these three intermediates are identical and populated in different conditions. However, the properties of the intermediate (I(A) state) identified at pH approximately 1.5 are different from those of the I(UG) state.  相似文献   

8.
Proteolytic processing enzymes are required to convert the enkephalin precursor to active opioid peptides. In this study, a novel 33-kDa thiol protease that cleaves complete precursor in the form of [35S]methionine preproenkephalin was purified from bovine adrenal medullary chromaffin granules. Chromatography on concanavalin A-Sepharose and Sephacryl S-200, chromatofocusing, and chromatography on thiopropyl-Sepharose resulted in an 88,000-fold purification with a recovery of 35% of enzyme activity. The thiol protease is a glycoprotein with a pI of 6.0. It cleaves [35S]methionine preproenkephalin with a pH optimum of 5.5, indicating that it is functional at the intragranular pH of 5.5-6.0. Interestingly, production of trichloroacetic acid-soluble products was optimal at pH 4.0, suggesting that processing of initial precursor and intermediates may require slightly different pH conditions. The protease requires dithiothreitol for activity and is inhibited by the thiol protease inhibitors iodoacetate, p-hydroxymercuribenzoate, mercuric chloride, and cystatin. These properties distinguish it from other thiol proteases (cathepsins B, H, L, N, and S), indicating that a unique thiol protease has been identified. The enzyme converted [35S]cysteine preproenkephalin (possessing [35S]cysteine residues specifically within the precursor's NH2-terminal segment) to 22.1-, 21.6-, 17.7-, 17.3-, and 15.0-kDa intermediates that contain the precursor's NH2-terminal segment; proenkephalin in vivo is converted to similar intermediates. The enzyme cleaves peptide F at Lys-Arg and Lys-Lys dibasic amino acid sites to generate methionine enkephalin and intermediates. The appropriate vesicular localization, pH optimum, proteolytic products, and cleavage site specificity suggest that this thiol protease may be involved in enkephalin precursor processing. Most interestingly, [35S]methionine beta-preprotachykinin, a precursor of substance P, is minimally cleaved, suggesting that the thiol protease may possess some selectivity for the enkephalin precursor.  相似文献   

9.
Purification and properties of a thiol protease from rat liver nuclei   总被引:1,自引:0,他引:1  
A thiol protease was purified about 800-fold from the chromatin fraction of rat liver by employing Sepharose 6B gel filtration, chromatofocusing and Sephadex G-100 gel filtration. It was nearly homogeneous on sodium dodecyl sulfate/polyacrylamide gel electrophoresis and its molecular weight was about 29000. The isoelectric point of the enzyme was 7.1. The pH optimum for degradation of 3H-labelled ribosomal proteins was 4.5. It is noticeable that the maximal activity was shifted to pH 5.5 by DNA, and that 30-40% of the maximal activity was observed at neutral pH in the presence of DNA. The activity was increased about twice by 2-4 mM dithiothreitol. The protease may be specific for the nuclei because it is different from all lysosomal thiol proteases ever known.  相似文献   

10.
As regulators of ubiquitous biological processes, serine proteases can cause disease states when inappropriately expressed or regulated, and are thus rational targets for inhibition by drugs. Recently we described a new inhibition mechanism applicable for the development of potent, selective small molecule serine protease inhibitors that recruit physiological Zn2+ to mediate high affinity (sub-nanomolar) binding. To demonstrate some of the structural principles by which the selectivity of Zn2+-mediated serine protease inhibitors can be developed toward or against a particular target, here we determine and describe the structures of thrombin-BABIM-Zn2+, -keto-BABIM-Zn2+, and -hemi-BABIM-Zn2+ (where BABIM is bis(5-amidino-2-benzimidazolyl)methane, keto-BABIM is bis(5-amidino-2-benzimidazolyl)methane ketone, and hemi-BABIM is (5-amidino-2-benzimidazolyl)(2-benzimidazolyl)methane), and compare them with the corresponding trypsin-inhibitor-Zn2+ complexes. Inhibitor binding is mediated by a Zn ion tetrahedrally coordinated by two benzimidazole nitrogen atoms of the inhibitor, by N(epsilon2)His57, and by O(gamma)Ser195. The structures of Zn2+-free trypsin-BABIM and -hemi-BABIM were also determined at selected pH values for comparison with the corresponding Zn2+-mediated complexes. To assess some of the physiological parameters important for harnessing Zn2+ as a co-inhibitor, crystal structures at multiple pH and [Zn2+] values were determined for trypsin-keto-BABIM. The Kdvalue of Zn2+ for the binary trypsin-keto-BABIM complex was estimated to be <12 nM at pH 7.06 by crystallographic determination of the occupancy of bound Zn2+ in trypsin-keto-BABIM crystals soaked at this pH in synthetic mother liquor containing inhibitor and 100 nM Zn2+. In synthetic mother liquor saturated in Zn2+, trypsin-bound keto-BABIM is unhydrated at pH 9.00 and 9.93, and has an sp2 hybridized ketone carbon bridging the 5-amidinobenzimidazoles, whereas at pH 7.00 and 8.00 it undergoes hydration and a change in geometry upon addition of water to the bridging carbonyl group. To show how Zn2+ could be recruited as a co-inhibitor of other enzymes, a method was developed for locating in protein crystals Zn2+ binding sites where design of Zn2+-mediated ligands can be attempted. Thus, by soaking trypsin crystals in high concentrations of Zn2+ in the absence of a molecular inhibitor, the site where Zn2+ mediates binding of BABIM and analogs was identified, as well as another Zn2+ binding site.  相似文献   

11.
Calf intestinal alkaline phosphatase (CIP) was denatured in 3.0 M guanidine hydrochloride for 2 h at 25 degrees C, before being diluted 20-fold with 0.1 M, pH 8.0, Tris-HCl buffer solution containing various effector molecules such as Mg2+, Zn2+, and nucleotide phosphate. The reactivation courses of the enzyme were investigated by the level of activity recovery, the recovery rate constant, and the relative standard deviation of the data. In the presence of effectors, the courses under reducing and nonreducing conditions of disulfide bonds of protein were compared. It was concluded that for CIP, Mg2+ is a more efficient inducer of reconstitution of the active site and appears to play a specific role. In addition, the present study discusses the differences in the refolding effectors between bacterial and mammalian enzymes.  相似文献   

12.
Arnost Horak  Helena Horak  Mary Packer 《BBA》1987,890(3):302-309
Submitochondrial particles were prepared from pea cotyledon mitochondria by sonication in a medium containing 5 mM MgCl2. The resulting particles (Mg2+-submitochondrial particles) catalyzed oxidative phosphorylation at the rate of 100–200 nmol ATP formed / min per mg protein. Treatment of Mg2+-submitochondrial particles with 3.0 M urea resulted in a preparation of highly resolved particles with low ATPase activity and no capacity for oxidative phosphorylation. However, the resulting membranes were not capable of reconstitution of oxidative posphorylation with the purified mitochondrial F1-ATPase. Urea particles capable of reconstitution of oxidative phosphorylation could be prepared by extracting Mg2+-submitochondrial particles with concentrations of urea ranging from 1.7 to 2.0 M. We have used 1.9 M urea for large-scale preparation of urea particles that could be stored in liquid nitrogen without any loss of reconstitution capacity. The residual oxidative phosphorylation rate of these particles was 6–8 nmol ATP / min per mg protein and this rate could increase to 60–70 nmol ATP / min per mg protein on incubation with saturating amounts of purified mitochondrial F1-ATPase. In contrast to the mitochondrial F1, purified activated pea chloroplast CF1 was unable to stimulate ATP synthesis in 1.9 M urea particles.  相似文献   

13.
Prolonged incubation of zinc-zinc leucine aminopeptidase (bovine lens) (EC 3.4.1.1) with 0.05 M CoCl2 and M KCl in 0.2 M N-ethylmorpholine-HCl at pH 7.5 and 37 degrees yields an active enzyme in which 2 g atoms of Co2+ per 54,000 dalton subunit have replaced the Zn2+. Incubation of cobalt-cobalt leucine aminopeptidase with various AnCl2 concentrations or zinc-zinc leucine aminopeptidase with various CoCl2 concentrations in M KCl and 0.2 M N-ethylmorpholine-HCl at pH 7.5 and 37 degrees demonstrates that Co2+ and Zn2+ compete reversibly for two independent binding sites per subunit for which the ratio of the association constants for Zn2+ and Co2+ (1KZn:1KCo = 1KZn/Co; 2KZn:2KCo = 2KZn/Co) are 115 and 15.9 for sites 1 and 2, respectively. The specific activities of the various species of enzyme with 2 mM L-leucine p-nitroanilide as substrate in 0.2 M N-ethylmorpholine-HCl and 0.01 M NaHCO3 at pH 7.5 are estimated to be (in micromoles per min per mg) 0.043 for the zinc-zinc. 0.039 for the zinc-cobalt, 0.541 for the cobalt-zinc, and 0.536 for the cobalt-cobalt forms, which implies that activity is affected only when cobalt is substituted at site 1, the "activation site." The site, at which cobalt substitution has no effect on activity, is designated the "structural site." The value of Km for cobalt-cobalt leucine aminopeptidase with L-leucine p-nitroanilide as substrate in 0.2 M N-ethylmorpholine-HCl at pH 7.5 containing 0.01 M NaHCO3 at 30 degrees is 0.52 mM while Vmax is 0.90 mumol per min per mg. In the additional presence of 1 M KCl, Km is 0.19 mM while Vmax is 0.68 mumol per min per mg.  相似文献   

14.
Zinc centers play a key role as important structure determinants in a variety of proteins including ferredoxins (Fd). Here, we exploit the availability of two highly similar ferredoxin isoforms from the thermophile Sulfolobus metallicus, which differ in the residues involved in coordinating a His/Asp zinc site that ties together the protein core with its N-terminal extension, to investigate the effect of the absence of this site on ferredoxin folding. The conformational properties of the zinc-containing (FdA) and zinc-lacking (FdB) isoforms were investigated using visible absorption and tryptophan fluorescence emission. Fluorescence quenching studies, together with comparative modeling and molecular dynamics simulations, indicate that the FdB N-terminal extension assumes a fold identical to that of the Zn(2+)-containing isoform. The thermal stability of the isoforms was investigated in a broad pH range (2 < pH < 10), and at physiological pH conditions, both proteins unfold above 100 degrees C. Surprisingly, the Zn(2+)-lacking isoform was always found to be more stable than its Zn(2+)-containing counterpart: a DeltaT(m) approximately 9 degrees C is determined at pH 7, a difference that becomes even more significant at extreme pH values, reaching a DeltaT(m) approximately 24 degrees C at pH 2 and 10. The contribution of the Zn(2+) site to ferredoxin stability was further resolved using selective metal chelators. During thermal unfolding, the zinc scavenger TPEN significantly lowers the T(m) in FdA ( approximately 10 degrees C), whereas it has no effect in FdB. This shows that the Zn(2+) site contributes to ferredoxin stability but that FdB has devised a structural strategy that accounts for an enhanced stability without using a metal cross-linker. An analysis of the FdB sequence and structural model leads us to propose that the higher stability of the zinc-containing ferredoxin results from van der Waals contacts formed between the residues that occupy the same spatial region where the zinc ligands are found in FdA. These favor the formation of a novel local stabilizing hydrophobic core and illustrate a strategy of natural fold design.  相似文献   

15.
In mammals, dihydroorotase is part of a trifunctional protein, dihydroorotate synthetase, which catalyzes the first three reactions of de novo pyrimidine biosynthesis. Dihydroorotase catalyzes the formation of a peptide-like bond between the terminal ureido nitrogen and the beta-carboxyl group of N-carbamyl-L-aspartate to yield heterocyclic L-dihydroorotate. A variety of evidence suggests that dihydroorotase may have a catalytic mechanism similar to that of a zinc protease [Christopherson, R. I., & Jones, M. E. (1980) J. Biol. Chem. 255, 3358-3370]. Tight-binding inhibitors of the zinc proteases, carboxypeptidase A, thermolysin, and angiotensin-converting enzyme have been synthesized that combine structural features of the substrates with a thiol or carboxyl group in an appropriate position to coordinate a zinc atom bound at the catalytic site. We have synthesized (4R)-2-oxo-6-thioxohexahydropyrimidine-4-carboxylate (L-6-thiodihydroorotate) and have found that this analogue is a potent competitive inhibitor of dihydroorotase with a dissociation constant (Ki) in the presence of excess Zn2+ ion of 0.17 +/- 0.02 microM at pH 7.4. The potency of inhibition by L-6-thiodihydroorotate in the presence of divalent metal ions decreases in the order Zn2+ greater than Ca2+ greater than Co2+ greater than Mn2+ greater than Ni2+; L-6-thiodihydroorotate alone is less inhibitory and has a Ki of 0.85 +/- 0.14 microM. 6-Thioorotate has a Ki of 82 +/- 8 microM which decreases to 3.8 +/- 1.4 microM in the presence of Zn2+. Zn2+ alone is a moderate inhibitor of dihydroorotase and does not enhance the potency of other inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Incubation of leucine aminopeptidase (bovine lens) (EC 3.4.1.1) with various concentrations of Mg2+ at various pH values in 1 M KCl and 0.155 M trimethylamine-HCl at 37 degrees confirms that Mg2+ competes with Zn2+ for binding only 1 site per 54,000-dalton subunit. The ratio of the apparent association constants (1KZn:1KMg = 1KZn/Mg) at this site (site 1) was estimated to be 20,720 at pH 8.16, 10,570 at pH 8.44, 3,590 at pH 8.78, and 660 AT PH 9.14. The decrease in values of 1KZn/Mg with increasing pH in the activation of leucine aminopeptidase by Mg2+ is attributed to the lowering of the free Zn2+ concentration relative to that of free Mg2+ caused by the formation of ZnOH+ and Zn(OH)2 complexes with increasing OH- concentration. When corrections are made for the binding of Zn2+ by OH- ions, the pH-independent ratio of association constants (1KZn:1KMg = 1KZn/Mg) for the relative binding of Zn2+ and Mg2+ at site 1 of leucine aminopeptidase in 29,800. From the effect of pH on the relative binding constant, a value (beta2) for the product of the two stepwise association constants for the formation of Zn(OH)2 from Zn2+ and OH- (Zn2+ + OH- in equilibrium ZnOH+; ZnOH+ + OH- in equilibrium Zn(OH)2) was estimated to be 4.42 X 10(10) M-2 at 37 degrees. Values of Km at pH 7.5 AND 30 degrees with L-leucine p-nitroanilide as substrate in the presence of 0.01 M NaHCO3 are 4.13 and 2.01 mM for the zinc-zinc and magnesium-zinc enzymes, respectively. Values for Vmax are 0.2 and 2.49 mumol/min/mg, respectively.  相似文献   

17.
Some properties of hexameric purine nucleoside phosphorylase II (EC 2.4.2.1) from Escherichia coli K-12 were studied. The enzyme obeys the Michaelis-Menten kinetics with respect to purine substrates (Km for inosine, deoxyinosine and hypoxanthine are equal to 492, 106 and 26.6 microM, respectively) and exhibits negative kinetic cooperativity towards phosphate and ribose-1-phosphate. The Hill coefficient is equal to approximately 0.5 for both substrates. Hexameric purine nucleoside phosphorylase II is not a metal-dependent enzyme; its activity is inhibited by Cu2+, Zn2+, Ni2+ and SO4(2-). The enzyme is the most stable at pH 6.0; it contains essential thiol groups. All substrates partly protect the enzyme against inactivation by 5.5'-dithiobis(2-nitrobenzoic acid) and heat-inactivation and, with the exception of phosphate-against inactivation by p-chloromercuribenzoate. Hypoxanthine, especially in combination with phosphate, afford the best protection against inactivation.  相似文献   

18.
It is shown that 2-10 microM Zn2+ induces swelling of rat liver mitochondria incubated in a buffered sucrose medium either with valinomycin or with FCCP, Ca2+, ionophore A23187, oligomycin, and nigericin. This swelling was associated with the release of GSH from mitochondria. Both processes were sensitive to known inhibitors of the mitochondrial permeability transition (MPT), cyclosporin A, and Mg2+. Mitochondrial swelling induced by Zn2+ was also inhibited by rotenone, antymycin A, N-ethylmaleimide, butylhydroxytoluene, and spermine, whereas it was stimulated by tert-butyl hydroperoxide, diamide, and monobromobimane. It did not require the addition of phosphate. The same sensitivity to pH of the mitochondrial swelling induced by Zn2+ and by phenylarsine oxide suggests the same site of the interaction, namely, thiol groups. The ability of Zn2+ to induce mitochondrial swelling gradually decreased along with its increasing concentration above 10 microM. It is concluded that micromolar Zn2+ induces the MPT presumably by the interaction with cysteinyl residues. This process is independent of the mitochondrial membrane potential.  相似文献   

19.
A R Merrill  F S Cohen  W A Cramer 《Biochemistry》1990,29(24):5829-5836
Acidic pH conditions required in vitro for membrane binding and activity of the channel-forming colicin E1 resulted in an increased susceptibility to proteases of the 178-residue thermolytic channel peptide, an increased accessibility to acrylamide of a fluorescence probe linked to cysteine-505 of the peptide, and an increased partition into nonionic detergent. The structural change in the peptide sensed by the fluorescence probe caused by a transition from pH 6.0 to 3.5 occurred in less than 1 s. The presence of low concentrations of detergents (0.001% SDS or 0.44% octyl beta-D-glucoside) or urea (0.2 M) at pH 6 or 4 also increased the susceptibility of the channel peptide to proteases. The increase in protease susceptibility and acrylamide accessibility at low pH, as well as partition of the peptide into nonionic detergent, suggested that acidic pH or the detergents might cause peptide unfolding. However, the hydrodynamic radius of the channel peptide at pH 6, 21-23 A, was not changed at pH 3.5 or by detergents or urea under conditions that increased the susceptibility of the peptide to protease. The activity of the channel peptide at pH 6 measured with liposomes and planar bilayers, which was a factor of 10(3)-10(4) smaller than that at pH 4, was increased by 2-4 orders of magnitude by 0.001% SDS or 0.44% octyl beta-D-glucoside, with an additional small increment of activity on planar bilayers caused by 0.01% SDS. A small increase in Stokes radius of the peptide in the presence of SDS could be detected that was approximately correlated with increased activity.  相似文献   

20.
We report here for the first time that Zn2+ is an effective inhibitor of renin and the protease from HIV-1, two aspartyl proteinases of considerable physiological importance. Inhibition of renin is noncompetitive and is accompanied by binding of 1 mol of Zn2+/mol of enzyme. Depending on the substrate, inhibition of the HIV protease by Zn2+ can be either competitive or noncompetitive, but in neither case is loss of activity due to disruption of the protease dimer. Inhibition of both enzymes is first order with respect to Zn2+ and is rapidly reversed by addition of EDTA. Ki values are strongly pH dependent and optimal in the range of 20 microM at or above pH 7. All of the data in hand suggest that the inhibitory effect of Zn2+ is a consequence of its binding at, or near, the active-site carboxyl groups of these aspartyl proteinases. This inhibition of the viral enzyme may help to explain some of the beneficial effects seen in AIDS patients who have received Zn2+ therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号