首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of separate lipoproteins or of serum with high or low lipoprotein concentrations on formation of lipophilic carcinogen adducts with DNA and on mutagenicity of the carcinogen was investigated using V79 Chinese hamster lung cells. Binding of r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) to DNA and BPDE induction of 6-thioguanine (6-TG)-resistant mutants in V79 cells was significantly lower after 1 or 4 h when the medium was supplemented with purified HDL, and was lower after 1 h but not 4 h when the medium was supplemented with serum containing a high concentration of mixed lipoproteins (LP). Cells grown in medium without serum or LP supplementation exhibited the highest levels of both BPDE-DNA adduct formation and mutagenesis after 1 h. At 1 h, cells exposed to BPDE in LDL-supplemented medium showed decreased adduct formation and mutagenesis when compared to cells treated with BPDE in PBS-supplemented medium. After 4 h, cells treated with BPDE in LDL-supplemented medium gave the highest levels of adduct formation and the highest mutation frequency. These results suggest that both LDL and HDL effectively decrease the concentration of BPDE available to V79 cells exposed to the mutagen for short periods of time, resulting in decreased interaction of BPDE with DNA and decreased BPDE-associated mutagenesis, but that both BPDE-DNA adduct formation and mutagenesis increased as a function of increased exposure time in the presence of LDL. The results suggest that LDL, but not HDL, uptake by adsorptive endocytosis may be associated with potentiated entry of BPDE into V79 cells as a function of time.  相似文献   

2.
3.
To investigate the role of DNA damage in the induction of homologous recombination in mammalian cells, a series of structurally related, polycyclic aromatic carcinogens, i.e., 1-nitrosopyrene (1-NOP), N-acetoxy-2-acetylaminofluorene (N-AcO-AAF), and 4-nitroquinoline 1-oxide (4-NQO), were compared for their ability to cause intrachromosomal homologous recombination between two herpes simplex virus thymidine kinase (Htk) genes stably integrated in the genome of a tk- mouse L cell strain 333 M. Each Htk gene contains an 8-bp XhoI linker inserted at a unique site so that expression of a functional Htk enzyme requires a productive recombinational event between the two nonfunctional genes. Each carcinogen caused a dose-dependent increase in the frequency of recombination. The results were compared to what had been found previously for a structurally related carcinogen, (+/-)-7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE). As a function of concentration, BPDE was the most active agent, followed by 4-NQO, and 1-NOP, and then N-AcO-AAF. When compared on the basis of equal cell killing, the most efficient carcinogen was 1-NOP, followed by N-AcO-AAF and BPDE, and then 4-NQO. Use of tritium-labeled compounds to determine the frequency of recombination as a function of the number of adducts initially bound to DNA showed that the most effective agent was BPDE, followed by 1-NOP and 4-NQO, and then N-AcO-AAF (ratio, 6.6:2.5:1.8:1.0). To determine if these differences in recombinagenic effectiveness reflected different rates of removal of the adducts from DNA, we measured the percentage of DNA adducts removed during the 24-h period post treatment and found that 1-NOP, 4-NQO and N-AcO-AAF residues were removed at approximately the same rate, i.e., 25%-30% off. Cellular analysis of a series of independent recombinants indicated that approximately 82% of the recombinational events induced by each agent were consistent with gene conversion. DNA-DNA hybridization analysis confirmed this, and showed that each recombinant tested contained an XhoI-resistant (wild-type) Htk gene; with the majority retaining the Htk gene duplication, consistent with nonreciprocal transfer of wild-type genetic information. In the rest, only a single copy of the Htk gene remained, reflecting a single reciprocal exchange within a chromatid or a single unequal exchange between sister chromatids.  相似文献   

4.
Studies showing that different types of DNA adducts are repaired in human cells at different rates suggest that DNA adduct conformation is the major determinant of the rate of nucleotide excision repair. However, recent studies of repair of cyclobutane pyrimidine dimers or benzo[a]pyrene diol epoxide (BPDE)-induced adducts at the nucleotide level in DNA of normal human fibroblasts indicate that the rate of repair of the same adduct at different nucleotide positions can vary up to 10-fold, suggesting an important role for local DNA conformation. To see if site-specific DNA repair is a common phenomenon for bulky DNA adducts, we determined the rate of repair of 1-nitrosopyrene (1-NOP)-induced adducts in exon 3 of the hypoxanthine phosphoribosyltransferase gene at the nucleotide level using ligation-mediated PCR. To distinguish between the contributions of adduct conformation and local DNA conformation to the rate of repair, we compared the results obtained with 1-NOP with those we obtained previously using BPDE. The principal DNA adduct formed by either agent involves guanine. We found that rates of repair of 1-NOP-induced adducts also varied significantly at the nucleotide level, but the pattern of site-specific repair differed from that of BPDE-induced adducts at the same guanine positions in the same region of DNA. The average rate of excision repair of 1-NOP adducts in exon 3 was two to three times faster than that of BPDE adducts, but at particular nucleotides the rate was slower or faster than that of BPDE adducts or, in some cases, equal to that of BPDE adducts. These results indicate that the contribution of the local DNA conformation to the rate of repair at a particular nucleotide position depends upon the specific DNA adduct involved. However, the data also indicate that the conformation of the DNA adduct is not the only factor contributing to the rate of repair at different nucleotide positions. Instead, the rate of repair at a particular nucleotide position depends on the interaction between the specific adduct conformation and the local DNA conformation at that nucleotide.  相似文献   

5.
6.
Among women infected with carcinogenic human papillomavirus (HPV), there is a two- to five-fold increased risk of cervical precancer and cancer in women who smoke compared to those who do not smoke. Because tobacco smoke contains carcinogenic polycyclic aromatic hydrocarbons (PAHs), it was of interest to examine human cervical tissue for PAH-DNA adduct formation. Here, we measured PAH-DNA adduct formation in cervical biopsies collected in follow-up among women who tested positive for carcinogenic HPV at baseline. A semi-quantitative immunohistochemistry (IHC) method using antiserum elicited against DNA modified with r7,t8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) was used to measure nuclear PAH-DNA adduct formation. Cultured human cervical keratinocytes exposed to 0, 0.153, or 0.331microM BPDE showed dose-dependent increases in r7,t8,t9-trihydroxy-c-10-(N(2)deoxyguanosyl)-7,8,9,10-tetrahydro-benzo[a]pyrene (BPdG) adducts. For BPdG adduct analysis, paraffin-embedded keratinocytes were stained by IHC with analysis of nuclear color intensity by Automated Cellular Imaging System (ACIS) and, in parallel cultures, extracted DNA was assayed by quantitative BPDE-DNA chemiluminescence immunoassay (CIA). For paraffin-embedded samples from carcinogenic HPV-infected women, normal-appearing cervical squamous epithelium suitable for scoring was found in samples from 75 of the 114 individuals, including 29 cases of cervical precancer or cancer and 46 controls. With a lower limit of detection of 20 adducts/10(8) nucleotides, detectable PAH-DNA adduct values ranged from 25 to 191/10(8) nucleotides, with a median of 75/10(8) nucleotides. PAH-DNA adduct values above 150/10(8) nucleotides were found in eight samples, and in three samples adducts were non-detectable. There was no correlation between PAH-DNA adduct formation and either smoking or case status. Therefore, PAH-DNA adduct formation as measured by this methodology did not appear related to the increased risk of cervical precancer and cancer among carcinogenic HPV-infected smokers.  相似文献   

7.
Benzo[a]pyrene (BaP) is metabolically activated by cytochrome P450 enzymes, and forms DNA adduct leading to mutations. Cytochrome P450 1A1 plays a central role in this activation step, and this enzyme is strongly induced by chemical agents that bind to the aryl hydrocarbon receptor (AhR), which is also known as a dioxin receptor. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent AhR ligand has not been shown to form any DNA adduct, but has a possibility to aggravate the toxicity of precarcinogenic polycyclic hydrocarbons through the induction of metabolic enzymes. We treated human hepatoma cells (HepG2) with TCDD, and subsequently exposed them to BaP to elucidate the synergistic effects on mutations. Surprisingly, mutant frequency induced by BaP at the hypoxanthine-guanine phosphribosyltransferase (HPRT) locus was decreased by pretreatment with TCDD. In correlation with decrease in the mutant frequencies, BaP–DNA adduct formation was also decreased by TCDD pretreatment. This suppressive effect of TCDD was more potent when the cells were exposed to (±)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), a reactive metabolic intermediate of BaP. Among the enzymes catalyzing BaP oxidation and conjugation, cytochrome P450 1A1, 1A2, 3A4 and UDP-glucuronosyltransferase 1A1 mRNAs were induced by the exposure to TCDD. In cytochrome P450 1A1-deficient murine cells and cytochrome P450 1A1-uninducible human cells, TCDD could not suppress BPDE–DNA adduct formation. Further experiments using “Tet-On” cytochrome P450 1A1-overexpressing cells and a recombinant cytochrome P450 1A1 enzyme demonstrated that this is the key enzyme involved in the biotransformation of BaP, that is, both production and inactivation of BPDE. We conclude that TCDD-induced cytochrome P450 catalyzes the metabolism of BPDE to as yet-unidentified products that are not apparently DNA-reactive, thereby reducing mutations in hepatoma cells.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) present in ambient air are considered as potential human carcinogens, but the detailed mechanism of action is still unknown. Our aim was to study the in vitro effect of exposure to dibenzo[a,l]pyrene (DB[a,l]P), the most potent carcinogenic PAH ever tested, and benzo[a]pyrene (B[a]P) in a normal human diploid lung fibroblast cells (HEL) using multiple endpoints. DNA adduct levels were measured by 32P-postlabelling, the expression of p53 and p21(WAF1) proteins by western blotting and the cell cycle distribution by flow cytometry. For both PAHs, the DNA adduct formation was proportional to the time of exposure and dependent on the stage of cell growth in culture. DNA binding was detectable even at the lowest concentration used (24h exposure, 0.01 microM for both PAHs). The highest DNA adduct levels were observed after 24h of exposure in near-confluent cells (>90% of cells at G0/G1 phase), but DNA damage induced by DB[a,l]P was approximately 8-10 times higher at a concentration one order of magnitude lower as compared with B[a]P (for B[a]P at 1 microM and for DB[a,l]P at 0.1 microM: 237+/-107 and 2360+/-798 adducts/10(8) nucleotides, respectively). The induction of p53 and p21(WAF1) protein occurred subsequent to the induction of DNA adducts. The DNA adduct levels correlated with both p53 (R=0.832, P<0.001 and R=0.859, P<0.001, for DB[a,l]P and B[a]P, respectively) and p21(WAF1) levels (R=0.808, P<0.001 and R=0.797, P=0.001, for DB[a,l]P and B[a]P, respectively), regardless of the PAH exposure and the phase of cell growth. The results showed that a detectable increase of p53 and p21(WAF1) proteins (> or = 1.5-fold as compared with controls) requires a minimal DNA adduct level of approximately 200-250 adducts/10(8) nucleotides for both PAHs tested and suggest that the level of adducts rather than their structure triggers the p53 and p21(WAF1) responses. The cell cycle was altered after 12-16h of treatment, and after 24h of exposure to 0.1 microM DB[a,l]P in growing cells, there was approximately 24% increase in S phase cells accompanied by a decrease in G1 and G2/mitosis (G2/M) cells. Cell treatment with 1.0 microM B[a]P resulted in more subtle alterations. We conclude that DB[a,l]P, and to a lesser degree B[a]P, are able to induce DNA adducts as well as p53 and p21(WAF1) without eliciting G1 or G2/M arrests but rather an S phase delay/arrest. Whether the S phase delay observed in our study is beneficial for the survival of the cells remains to be further established.  相似文献   

9.
A new method was developed to determine the mutagenic efficacy of a suspected mutagen by employing green fluorescent protein (GFP) as a direct biosensor for mutation detection. Alterations in target gene (AcGFP1) expression after mutagen [(±)-7p,8a-dihydroxy-9a,10a-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)] treatment were measured to detect the mutagenic efficacy of the carcinogen. In contrast to mutagen treatment of the entire plasmid or cell culture, the target AcGFP1gene devoid of the plasmid backbone was exposed to BPDE (10–500 μM) to eliminate the need for an additional fusion gene. Shuttle vectors (pAcGFP-N1) were religated to the AcGFP1 gene with BPDE adducts (0–8.59 μM) and replicated in the eukaryotic host. This approach eliminated false-negative errors in target gene expression that arose from BPDE adduct formation in the residual plasmid backbone rather than in the AcGFP1 gene. Determination of the BPDE–AcGFP1 adducts allowed the quantitative mutagenic effect of the BPDE adducts on AcGFP1 gene expression to be monitored. The results obtained with flow cytometry and confocal microscopy validate our method and demonstrate efficient and direct use of GFP as a biosensor for mutation detection.  相似文献   

10.
11.
DNA repair should occur after cells sense DNA damage signals and undergo cell-cycle arrest to provide sufficient time for DNA repair, and suboptimal DNA repair capacity (DRC) in peripheral lymphocytes has been suggested as a cancer susceptibility marker. Numerous studies showed a functional link between DNA damage sensing, cell-cycle checkpoint, and DNA repair. We hypothesized that in vitro cell-cycle checkpoint-related protein expression levels in stimulated lymphocytes predict DRC levels. To test this hypothesis, we performed the host-cell reactivation assay for DRC by transfecting stimulated peripheral blood lymphocytes from 120 normal donors with transient expression plasmids damaged by benzo[a]pyrene diol epoxide (BPDE). The same cells were assessed for protein expression induction of eight cell-cycle checkpoint-related genes using the reverse-phase protein lysate microarray assay. In multivariate linear regression analysis adjusting for age, sex, blastogenic rate, and sample storage duration, the association between DRC and expression levels of cell-cycle checkpoint-related proteins induced by BPDE-adducts was statistically significant for p27, CCND1, ATM, and MDM2 (P = 0.00, 0.03, 0.03, and 0.03, respectively), borderline for p73 and p21 (P = 0.07 and 0.09, respectively), but not for p53 and p16 (P = 0.13 and 0.18, respectively). Because the relative expression levels of all these eight proteins were highly correlated, we further performed the principal component analysis and identified ATM as the most important predictor of DRC, followed by MDM2 and p27. Our results provide population-based in vitro evidence demonstrating that cell-cycle checkpoint-related proteins play essential roles in regulating DNA repair, at least in unaffected human peripheral blood lymphocytes. Further studies are warranted to investigate the role of interindividual variation in the expression levels of these proteins in cancer susceptibility.  相似文献   

12.
Present study investigated whether endosulfan, an organochlorine pesticide is able to deplete glutathione (GSH) and induce apoptosis in human peripheral blood mononuclear cells (PBMC) in vitro. The role of oxidative stress in the induction of apoptosis was also evaluated by the measurement of the GSH level in cell lysate. The protective role of N-acetylcysteine (NAC) on endosulfan-induced apoptosis was also studied. Isolated human PBMC were exposed to increasing concentrations (0-100 microM) of endosulfan (alpha/beta at 70:30 mixture) alone and in combination with NAC (20 microM) up to 24 h. Apoptotic cell death was determined by Annexin-V Cy3.18 binding and DNA fragmentation assays. Cellular GSH level was measured using dithionitrobenzene. Endosulfan at low concentrations, i.e., 5 and 10 microM, did not cause significant death during 6 h/12 h incubation, whereas a concentration-dependent cell death was observed at 24 h. DNA fragmentation analysis revealed no appreciable difference between control cells and 5 microM/10 microM endosulfan treated cells, where only high molecular weight DNA band was observed. Significant ladder formation was observed at higher concentration, which is indicative of apoptotic cell death. Intracellular GSH levels decreased significantly in endosulfan-treated cells in a dose-dependent manner, showing a close correlation between oxidative stress and degree of apoptosis of PBMC. Cotreatment with NAC attenuated GSH depletion as well as apoptosis. Our results provide experimental evidence of involvement of oxidative stress in endosulfan-mediated apoptosis in human PBMC in vitro.  相似文献   

13.
The formation and removal of covalent adducts of racemic 7 beta, 8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE I) was studied in nucleosomal DNA of confluent cultures of normal human fibroblasts (NF). For this purpose NF were prelabeled in their DNA with [14C]-thymidine and treated with [3H]BPDE I. The adducts were composed of 77% (7R)-N2-(7 beta, 8 alpha, 9 alpha-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene-10-yl)deoxyguanosine, 12% of the corresponding 7S-enantiomer and of minor amounts of adducts to cytosine and adenine. The adduct composition did not change significantly in 24-h post treatment incubation. Bulk mononucleosomes were prepared from micrococcal nuclease digested nuclei and their DNA analyzed by gel electrophoresis. The adduct concentrations were determined in 145 base pair (b.p.) nucleosomal core-DNA, 165 b.p. chromatosomal DNA and in total nuclear DNA. From these data the concentration in nucleosomal linker-DNA was calculated. The initial adduct distribution was non-random and 6.3 times higher in 47 b.p. linker-DNA relative to 145 b.p. core-DNA and 9.2 times higher in 27 b.p. linker-DNA relative to 165 b.p. chromatosomal DNA. Adduct removal was very rapid during the first 8 h and more efficient from linker-DNA than from core-DNA. After this early phase the adducts located in 145 b.p. core-DNA became refractory to further excision and represent a major fraction of the adducts persisting in DNA of NF over a prolonged period. In contrast, further adduct removal was observed from nucleosomal linker-DNA.  相似文献   

14.
Prokaryotic DNA repair nucleases are useful reagents for detecting DNA lesions. UvrABC endonuclease, encoded by the UvrA, UvrB, and UvrC genes can incise DNA containing bulky nucleotide adducts and intrastrand cross-links. UvrA, UvrB, and UvrC were cloned from Bacillus caldotenax (Bca)and UvrC from Thermatoga maritima (Tma), and recombinant proteins were overexpressed in and purified from Escherichia coli. Incision activities of UvrABC composed of all Bca-derived subunits (UvrABC(Bca)) and an interspecies combination UvrABC composed of Bca-derived UvrA and UvrB and Tma-derived UvrC (UvrABC(Tma)) were compared on benoz[a]pyrene-7,8-dihyrodiol-9,10-epoxide (BPDE)-adducted substrates. Both UvrABC(Bca) and UvrABC(Tma) specifically incised both BPDE-adducted plasmid DNAs and site-specifically modified 50-bp oligonucleotides containing a single (+)-trans- or (+)-cis-BPDE adduct. Incision activity was maximal at 55-60 degrees C. However, UvrABC(Tma) was more robust than UvrABC(Bca) with 4-fold greater incision activity on BPDE-adducted oligonucleotides and 1.5-fold greater on [(3)H]BPDE-adducted plasmid DNAs. Remarkably, UvrABC(Bca) incised only at the eighth phosphodiester bond 5' to the BPDE-modified guanosine. In contrast, UvrABC(Tma) performed dual incision, cutting at both the fifth phosphodiester bond 3' and eighth phosphodiester bond 5' from BPDE-modified guanosine. BPDE adduct stereochemistry influenced incision activity, and cis adducts on oligonucleotide substrates were incised more efficiently than trans adducts by both UvrABC(Bca) and UvrABC(Tma). UvrAB-DNA complex formation was similar with (+)-trans- and (+)-cis-BPDE-adducted substrates, suggesting that UvrAB binds both adducts equally and that adduct configuration modifies UvrC recognition of the UvrAB-DNA complex. The dual incision capabilities and higher incision activity of UvrABC(Tma) make it a robust tool for DNA adduct studies.  相似文献   

15.
1-Nitropyrene has been shown in bacterial assays to be the principal mutagenic agent in diesel emission particulates. It has also been shown to be mutagenic in human fibroblasts and carcinogenic in animals. To investigate the kinds of mutations induced by this carcinogen and compare them with those induced by a structurally related carcinogen, (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetra-hydrobenzo [a]pyrene (BPDE) (J.-L. Yang, V. M. Maher, and J. J. McCormick, Proc. Natl. Acad. Sci. USA 84:3787-3791, 1987), we treated a shuttle vector with tritiated 1-nitrosopyrene (1-NOP), a carcinogenic mutagenic intermediate metabolite of 1-nitropyrene which forms the same DNA adduct as the parent compound, and introduced the plasmids into a human embryonic kidney cell line, 293, for DNA replication to take place. The treated plasmid, pZ189, carrying a bacterial suppressor tRNA target gene, supF, was allowed 48 h to replicate in the human cells. Progeny plasmids were then rescued, purified, and introduced into bacteria carrying an amber mutation in the beta-galactosidase gene in order to detect those carrying mutations in the supF gene. The frequency of mutants increased in direct proportion to the number of DNA-1-NOP adducts formed per plasmid. At the highest level of adduct formation tested, the frequency of supF mutants was 26 times higher than the background frequency of 1.4 X 10(-4). DNA sequencing of 60 unequivocally independent mutant derived from 1-NOP-treated plasmids indicated that 80% contained a single base substitution, 5% had two base substitutions, 4% had small insertions or deletions (1 or 2 base pairs), and 11% showed a deletion or insertion of 4 or more base pairs. Sequence data from 25 supF mutants derived from untreated plasmids showed that 64% contained deletions of 4 or more base pairs. The majority (83%) of the base substitution in mutants from 1-NOP-treated plasmids were transversions, with 73% of these being G . C --> T . A. This is very similar to what we found previously in this system, using BPDE, but each carcinogen produced its own spectrum of mutations. Of the five hot spots for base substitution mutations produced in the supF gene with 1-NOP, two were the same as seen with BPDE-treated plasmids. However, the three other hot spots were cold spots for BPDE-treated plasmids. Conversely, four of the other five hot spots seen with BPDE-treated plasmids were cold spots for 1-NOP-treated plasmids. Comparison of the two carcinogens for the frequency of supF mutants induced per DNA adduct showed that 1-NOP-induced adducts were 3.8 times less than BPDE adducts. However, the 293 cell excised 1-NOP-induced adducts faster than BPDE adducts.  相似文献   

16.
The chemical carcinogen (+)-anti BPDE preferentially binds covalently to the guanine base in the minor groove of DNA. Fluorescence spectroscopic studies have shown that the BPDE molecules bound to DNA can interact in their photo-excited state giving strong excimer fluorescence when bound to poly(dGdC) · poly(dGdC). It was suggested that the formation of such excited state complexes is most probable when the two (+)-anti-BPDE bind to guanines of adjacent base pairs on the two different strands of the DNA. In the present work a model for such an excimer forming DNA-BPDE double adduct system has been constructed and shown to be stable over a 300 ps molecular dynamics simulation in a water box. The model is a d(CG)3 · d(CG)3 molecule with two BPDE molecules bound to the guanines at the 4th position on each strand, located in the minor groove and each oriented towards the 5 end of the modified strand, respectively. The results of 300 ps MD simulation show that the two BPDE chromophores exhibited on the average a relative geometry favourable for excimer formation. The local structure at the adduct position was considerably distorted and the helix axis was bent. The modified bases were found to be paired through a stable single non-Watson Crick type of hydrogen bond. Correspondence to: A. Gräslund  相似文献   

17.
The effects of secondary structure on DNA modification by (+/-)-7 beta, 9 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzol[a]pyrene [(+/-)BPDE I] were investigated. No differences in the total extent of (+/-) BPDE I binding to double- and single-stranded calf thymus DNA were found. High-performance liquid chromatography (LC) of the nucleoside adducts obtained from hydrolysates of native and denatured calf thymus, as well as from superhelical and linear plasmid DNA, indicated that in all cases the major adduct (60--80% of total adducts) was formed by reaction of the (+) enantiomer of BPDE I with the N-2 position of dG residues in the DNA. A minor adduct formed from the reaction of the (-) enantiomer with dG residues was also detected and was present in greater amounts in denautred DNA than in native DNA. Small amounts of BPDE I--dA and BPDE I--dC adducts were also detected in both the single- and double-stranded DNAs. Restriction enzyme analysis of BPDE I modified SV40 and phage lambda DNA provided evidence that the modification of DNA by this carcinogen is fairly random with respect to nucleotide sequence. Partial hydrolysis of modified plasmid DNA by the single-strand-specific S1 nuclease and LC analysis of the nucleoside adducts in the digested and undigested fractions of the DNA revealed no preferential excision by the S1 nuclease of the different BPDE I--deoxynucleoside adducts. Functional changes in BPDE I modified DNA were demonstrated. With increasing extents of modification, there was a decrease in the ability of plasmid DNA to transfect a receptive Escherichia coli strain to antibiotic resistance.  相似文献   

18.
A benzo[a]pyrene(BP)-Gua adduct was extracted in the urine of rats treated with BP. Some (0.15%) of the administered dose of BP was excreted as BP-Gua within 48 h. A double labelling experiment demonstrated that the excreted product contained both a BP and a Gua moiety. Partially hepatectomized rats treated with [14C]Gua during the regenerative phase were injected with [3H]BP and the urine collected and processed by chromatographic procedures. The adduct had similar chromatographic properties to the adduct released from human PLC/5 cells treated with 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and co-chromatographed with 7-BPDE-Gua released from BPDE-adducted DNA under aqueous conditions. Detection and quantitation of BP-Gua offers an alternative, non-invasive method of monitoring individuals exposed to carcinogenic polycyclic aromatic hydrocarbons (PAHs).  相似文献   

19.
人体肝癌细胞急性低氧及低氧习服差异表达基因分析   总被引:9,自引:0,他引:9  
Wang JH  Shan YJ  Cong YW  Wu LJ  Yuan XL  Zhao ZH  Wang SQ  Chen JP 《生理学报》2003,55(3):324-330
本文分析了人体肝癌细胞(HepG2)急性低氧处理以及低氧习服处理后基因表达谱的改变。急性低氧处理为细胞在1%氧气中培养48h,低氧习服处理为细胞在1%氧气中培养24h,常氧培养24h,以此作为一个周期,重复6个周期。联合应用抑制消减杂交技术和cDNA芯片技术,筛选HepG2细胞经急性低氧处理与正常培养细胞相比差异表达的基因,以及经低氧习服处理细胞与正常培养细胞相比差异表达的基因。结果显示,HepG2细胞经急性低氧处理与在常氧条件下培养相比,差异表达的基因有37个,表达水平全部表现为下调,其中包括参与细胞周期、细胞应激、细胞信号转导、细胞骨架形成、转录相关蛋白及细胞代谢相关蛋白的基因,1个未知基因序列、4个EST序列、5个线粒体蛋白基因,另外有功能不明的蛋白质基因12个。低氧习服处理的细胞与常氧条件下培养的细胞相比,差异表达的基因有6个,其中包括两个线粒体蛋白基因、金属蛋白酶1基因、转铁蛋白基因、Thymosin .beta-4和TPT1基因。其中线粒体蛋白ND4、转铁蛋白、Thymosin.beta-4和TPT1基因的表达呈上调,线粒体NDl及金属蛋白酶1基因的表达水平呈下调。经低氧习服处理后,细胞低氧耐受力提高,低氧习服处理细胞基因的表达与急性低氧处理细胞和正常培养细胞的基因表达不同,这种变化可能与低氧习服细胞低氧耐受力的增强有关。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号