首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Myxococcus xanthus is a bacterium that moves by gliding motility and exhibits multicellular development (fruiting body formation). The frizzy (frz) mutants aggregate aberrantly and therefore fail to form fruiting bodies. Individual frz cells cannot control the frequency at which they reverse direction while gliding. Previously, FrzCD was shown to exhibit significant sequence similarity to the enteric methyl-accepting chemotaxis proteins. In this report, we show that FrzCD is modified by methylation and that frzF encodes the methyltransferase. We also identify a new gene, frzG, whose predicted product is homologous to that of the cheB (methylesterase) gene from Escherichia coli. Thus, although M. xanthus is unflagellated, it appears to have a sensory transduction system which is similar in many of its components to those found in flagellated bacteria.  相似文献   

2.
The frizzy (frz) genes of Myxococcus xanthus are required to control directed motility during vegetative growth and fruiting body formation. FrzCD, a protein homologous to the methyl-accepting chemotaxis proteins from enteric bacteria, is modified by methylation in response to environmental conditions. Transfer of cells from rich medium to fruiting medium initially caused rapid demethylation of FrzCD. Subsequently, the amount of FrzCD increased, but most remained unmethylated. At about the time of mound formation (9 h), most of the FrzCD was converted to methylated forms. Dispersal of developing cells (10 h) in buffer led to the demethylation of FrzCD, whereas concentration of these cells caused methylation of FrzCD. Some mutants which were unable to form fruiting bodies still modified their FrzCD during incubation under conditions of starvation on a surface.  相似文献   

3.
4.
The frz genes of Myxococcus xanthus constitute a signal-transduction pathway that processes chemotactic information in a manner analogous to that found in enteric bacteria. Ultimately, these genes regulate the frequency of individual cell reversal. We report here the identification of a novel component of this signal-transduction pathway, designated frzZ , which was discovered as an open reading frame located 5' to the frz operon but transcribed in the opposite orientation. The translational start site of frzZ   is 170 base pairs from that of frzA frzZ   utilizes a promoter similar to the σ70 promoters of Escherichia coli , and encodes a 290-amino-acid soluble protein, FrzZ ( M r 30 500). FrzZ contains two domains, both of which show strong homology to CheY and other members of the response-regulator family. Linking these domains is a 39-amino-acid region that is very rich in alanine and proline (38% Ala and 33% Pro). A frzZ null mutant showed abnormally low reversal rates when compared to the wild-type control and was unable to form fruiting bodies on starvation medium, but it did form 'frizzy' aggregates. In addition, the frzZ mutant was defective in swarming, particularly on soft agar (0.3% w/v). However, unlike most frz mutants, the frzZ mutant was able to respond to attractants and repellents in the spatial chemotaxis assay. The discovery of FrzZ demonstrates that the M. xanthus frz signal-transduction pathway utilizes multiple response-regulator (CheY-like) proteins.  相似文献   

5.
Myxococcus xanthus is a Gram-negative gliding bacterium that aggregates and develops into multicellular fruiting bodies in response to starvation. Two chemosensory systems (frz and dif), both of which are homologous to known chemotaxis proteins, were previously identified through characterization of various developmental mutants. This study aims to examine the interaction between these two systems since both of them are required for fruiting body formation of M. xanthus. Through detailed phenotypic analyses of frz and dif double mutants, we found that both frz and dif are involved in cellular reversal and social motility; however, the frz genes are epistatic in controlling cellular reversal, whereas the dif genes are epistatic in controlling social motility. The study suggests that the integration of these two chemotaxis systems may play a central role in controlling the complicated social behaviors of M. xanthus.  相似文献   

6.
Role of cell cohesion in Myxococcus xanthus fruiting body formation.   总被引:20,自引:15,他引:5       下载免费PDF全文
Dsp mutants of Myxococcus xanthus have a complex phenotype with abnormal cell cohesion, social motility, and development. All three defects are the result of a single mutation in the dsp locus, a region of DNA about 14 kilobases long. Cohesion appears to play a central role in social motility, since nonsocial mutants exhibit weak agglutination or, in the case of Dsp cells, no agglutination (L. J. Shimkets, J. Bacteriol. 166:837-841, 1986). However, Dsp cells can be agglutinated by cohesive strains of M. xanthus. This provided the opportunity to examine the role of cohesion during development by comparing the developmental phenotype of Dsp cells with that of Dsp cells mixed with cohesive strains. Dsp mutants were unable to complete any of the developmental behaviors: aggregation, fruiting body formation, developmental autolysis, and sporulation. Contact with cohesive strains seemed to restore some developmental characteristics to the Dsp cells. When allowed to develop with wild-type cells, Dsp cells accumulated in fruiting bodies and underwent developmental autolysis, but did not form a significant portion of the spore population. Igl mutants, which may be similar to the previously described frizzy mutants, are cohesive strains that are unable to form fruiting bodies. Mixing Igl cells with Dsp cells under developmental conditions resulted in fruiting body formation, although the Dsp cells were unable to form significant levels of myxospores. In spite of their inability to sporulate under developmental conditions, Dsp mutants did not appear to be defective in the sporulation process. In fact, they formed normal levels of myxospores in response to the chemical inducer glycerol.  相似文献   

7.
8.
Myxococcus xanthus cells aggregate and develop into multicellular fruiting bodies in response to starvation. A new M. xanthus locus, designated dif for defective in fruiting, was identified by the characterization of a mutant defective in fruiting body formation. Molecular cloning, DNA sequencing and sequence analysis indicate that the dif locus encodes a new set of chemotaxis homologues of the bacterial chemotaxis proteins MCPs (methyl-accepting chemotaxis proteins), CheW, CheY and CheA. The dif genes are distinct genetically and functionally from the previously identified M. xanthus frz chemotaxis genes, suggesting that multiple chemotaxis-like systems are required for the developmental process of M. xanthus fruiting body formation. Genetic analysis and phenotypical characterization indicate that the M. xanthus dif locus is required for social (S) motility. This is the first report of a M. xanthus chemotaxis-like signal transduction pathway that could regulate or co-ordinate the movement of M. xanthus cells to bring about S motility.  相似文献   

9.
Myxococcus xanthus, a nonflagellated gliding bacterium, exhibits multicellular behavior during vegetative growth and fruiting body formation. The frizzy (frz) genes are required to control directed motility for these interactions. The frz genes encode proteins that are homologous to all of the major enteric chemotaxis proteins, with the exception of CheZ. In this study, we characterized FrzCD, a protein which is homologous to the methyl-accepting chemotaxis proteins from the enteric bacteria. FrzCD, unlike the other methyl-accepting chemotaxis proteins, was found to be localized primarily in the cytoplasmic fraction of cells. FrzCD migrates as a ladder of bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, reflecting heterogeneity due to methylation or demethylation and to deamidation. FrzCD was shown to be methylated in vivo when cells were exposed to yeast extract or Casitone and demethylated when starved in buffer. We used the methylation state of FrzCD as revealed by Western blot (immunoblot) analyses to search for stimuli that are recognized by the frz signal transduction system. Common amino acids, nucleotides, vitamins, and sugars were not recognized, but certain lipids and alcohols were recognized. For example, the saturated fatty acids capric acid and lauric acid stimulated FrzCD methylation, whereas a variety of other saturated fatty acids did not. Lauryl alcohol and lipoic acid also stimulated methylation, as did phospholipids containing lauric acid. In contrast, several short-chain alcohols, such as isoamyl alcohol, and some other solvents caused demethylation. The relatively high concentrations of the chemicals required for a response may indicate that these chemicals are not the relevant signals recognized by M. xanthus in nature. Isoamyl alcohol and isopropanol also had profound effects on the behavior of wild-type cells, causing them to reverse continuously. Cells of frzB, frzF, and frzG mutants also reversed continuously in the presence of isoamyl alcohol, whereas cells of frzA, frzCD, or frzE mutants did not. On the basis of the data presented, we propose a model for the frz signal transduction pathway in M. xanthus.  相似文献   

10.
The Frz chemosensory system controls directed motility in Myxococcus xanthus by regulating cellular reversal frequency. M. xanthus requires the Frz system for vegetative swarming on rich media and for cellular aggregation during fruiting body formation on starvation media. The Frz signal transduction pathway is formed by proteins that share homology with chemotaxis proteins from enteric bacteria, which are encoded in the frzA-F putative operon and the divergently transcribed frzZ gene. FrzCD, the Frz system chemoreceptor, contains a conserved C-terminal module present in methyl-accepting chemotaxis proteins (MCPs); but, in contrast to most MCPs, FrzCD is localized in the cytoplasm and the N-terminal region of FrzCD does not contain transmembrane or sensing domains, or even a linker region. Previous work on the Frz system was limited by the unavailability of deletion strains. To understand better how the Frz system functions, we generated a series of in-frame deletions in each of the frz genes as well as regions encoding the N-terminal portion of FrzCD. Analysis of mutants containing these deletions showed that FrzCD (MCP), FrzA (CheW) and FrzE (CheA-CheY) control vegetative swarming, responses to repellents and directed movement during development, thus constituting the core components of the Frz pathway. FrzB (CheW), FrzF (CheR), FrzG (CheB) and FrzZ (CheY-CheY) are required for some but not all responses. Furthermore, deletion of approximately 25 amino acids from either end of the conserved C-terminal region of FrzCD results in a constitutive signalling state of FrzCD, which induces hyper-reversals with no net cell movement. Surprisingly, deletion of the N-terminal region of FrzCD shows only minor defects in swarming. Thus, signal input to the Frz system must be sensed by the conserved C-terminal module of FrzCD and not the usual N-terminal region. These results indicate an alternative mechanism for signal sensing with this cytoplasmic MCP.  相似文献   

11.
Myxococcus xanthus has two nearly independent genetic systems, A and S, which appear to mediate adventurous (single-cell) movement and social (group) movement, respectively. In addition to a notable reduction in group movement, social motility mutants exhibit decreased biofilm formation, cell cohesion, dye binding, fibril production, and fruiting body formation. The stk-1907 allele, containing transposon Tn5 insertion omega DK1907, was introduced into wild-type cells and many social motility mutants. This allele, which was epistatic to most social motility mutations, caused wild-type and most mutant cells to exhibit increased group movement, cell cohesion, dye binding, and production of cell surface fibrils. The presence of the stk-1907 allele in dsp mutants, which almost completely lack cell surface fibrils, did not result in these phenotypic changes; therefore, stk-1907 is hypostatic to dsp mutations. Those mutants which exhibited increased group movement and cell cohesion with the stk-1907 allele also had increased fruiting body formation, but no significant changes in spore production were observed. These results suggest that fibrils may mediate cell cohesion, dye binding, and group movement. Additionally, the results suggest that the dsp locus contains genes involved in subunit synthesis, transport, and/or assembly of fibrils. The wild-type and mutant alleles of stk were cloned and studied in merodiploids. The mutant allele is recessive, suggesting that Tn5 omega DK1907 caused a null mutation in a gene which acts as a negative regulator of fibril synthesis. The stk-1907 allele appears to cause utilization of the A motility system for group movement, possibly because of increased fibril production.  相似文献   

12.
Stigmatella aurantiaca is a gram-negative bacterium which forms, under conditions of starvation in a multicellular process, characteristic three-dimensional structures: the fruiting bodies. For studying this complex process, mutants impaired in fruiting body formation have been induced by transposon insertion with a Tn5-derived transposon. The gene affected (fbfB) in one of the mutants (AP182) was studied further. Inactivation of fbfB results in mutants which form only clumps during starvation instead of wild-type fruiting bodies. This mutant phenotype can be partially rescued, if cells of mutants impaired in fbfB function are mixed with those of some independent mutants defective in fruiting before starvation. The fbfB gene is expressed about 14 h after induction of fruiting body formation as determined by measuring β-galactosidase activity in a merodiploid strain harboring the wild-type gene and an fbfB-Δtrp-lacZ fusion gene or by Northern (RNA) analysis with the Rhodobacter capsulatus pufBA fragment fused to fbfB as an indicator. The predicted polypeptide FbfB has a molecular mass of 57.8 kDa and shows a significant homology to the galactose oxidase (GaoA) of the fungus Dactylium dendroides. Galactose oxidase catalyzes the oxidation of galactose and primary alcohols to the corresponding aldehydes.  相似文献   

13.
Stigmatella aurantiaca is a prokaryotic organism that undergoes a multicellular cycle of development resulting in the formation of a fruiting body. For analyzing this process, mutants defective in fruiting body formation have been induced by transposon mutagenesis using a Tn5-derived transposon. About 800 bp upstream of the transposon insertion of mutant AP182 which inactivates a gene (fbfB) involved in fruiting, a further gene (fbfA) needed for fruiting body formation was detected. Inactivation of fbfA leads to mutants which form only non-structured clumps instead of the wild-type fruiting body. The mutant phenotype of fbfA mutants can be partially suppressed by mixing the mutant cells with cells of some independent mutants defective in fruiting body formation. The fbfA gene is transcribed after 8 h of development as determined by measuring the induction of beta-galactosidase activity of a fbfA-delta(trp)-lacZ fusion gene and by Northern (RNA) analysis using an insertion encoding a stable mRNA. The predicted polypeptide FbfA shows a homology of about 30% to NodC of rhizobia, an N-acetylglucosamine-transferase which is involved in the synthesis of the sugar backbone of lipo-oligosaccharides. These induce the formation of the root nodules in the Papilionaceae. Besides the predicted molecular mass of 45.5 kDa, the hydropathy profile reveals a structural relationship to the NodC polypeptide.  相似文献   

14.
Bacterial motility mechanisms, including swimming, swarming, and twitching, are known to have important roles in biofilm formation, including colonization and the subsequent expansion into mature structured surface communities. Directed motility requires chemotaxis functions that are conserved among many bacterial species. The biofilm-forming plant pathogen Agrobacterium tumefaciens drives swimming motility by utilizing a small group of flagella localized to a single pole or the subpolar region of the cell. There is no evidence for twitching or swarming motility in A. tumefaciens. Site-specific deletion mutations that resulted in either aflagellate, flagellated but nonmotile, or flagellated but nonchemotactic A. tumefaciens derivatives were examined for biofilm formation under static and flowing conditions. Nonmotile mutants were significantly deficient in biofilm formation under static conditions. Under flowing conditions, however, the aflagellate mutant rapidly formed aberrantly dense, tall biofilms. In contrast, a nonmotile mutant with unpowered flagella was clearly debilitated for biofilm formation relative to the wild type. A nontumbling chemotaxis mutant was only weakly affected with regard to biofilm formation under nonflowing conditions but was notably compromised in flow, generating less adherent biomass than the wild type, with a more dispersed cellular arrangement. Extragenic suppressor mutants of the chemotaxis-impaired, straight-swimming phenotype were readily isolated from motility agar plates. These mutants regained tumbling at a frequency similar to that of the wild type. Despite this phenotype, biofilm formation by the suppressor mutants in static cultures was significantly deficient. Under flowing conditions, a representative suppressor mutant manifested a phenotype similar to yet distinct from that of its nonchemotactic parent.  相似文献   

15.
Myxococcus xanthus cells move on a solid surface by gliding motility. Several genes required for gliding motility have been identified, including those of the A- and S-motility systems as well as the mgl and frz genes. However, the cellular defects in gliding movement in many of these mutants were unknown. We conducted quantitative, high-resolution single-cell motility assays and found that mutants defective in mglAB or in cglB, an A-motility gene, reversed the direction of gliding at frequencies which were more than 1 order of magnitude higher than that of wild type cells (2.9 min-1 for DeltamglAB mutants and 2.7 min-1 for cglB mutants, compared to 0.17 min-1 for wild-type cells). The average gliding speed of DeltamglAB mutant cells was 40% of that of wild-type cells (on average 1.9 micrometers/min for DeltamglAB mutants, compared to 4.4 micrometers/min for wild-type cells). The mglA-dependent reversals and gliding speeds were dependent on the level of intracellular MglA protein: mglB mutant cells, which contain only 15 to 20% of the wild-type level of MglA protein, glided with an average reversal frequency of about 1.8 min-1 and an average speed of 2.6 micrometers/min. These values range between those exhibited by wild-type cells and by DeltamglAB mutant cells. Epistasis analysis of frz mutants, which are defective in aggregation and in single-cell reversals, showed that a frzD mutation, but not a frzE mutation, partially suppressed the mglA phenotype. In contrast to mgl mutants, cglB mutant cells were able to move with wild-type speeds only when in close proximity to each other. However, under those conditions, these mutant cells were found to glide less often with those speeds. By analyzing double mutants, the high reversing movements and gliding speeds of cglB cells were found to be strictly dependent on type IV pili, encoded by S-motility genes, whereas the high-reversal pattern of mglAB cells was only partially reduced by a pilR mutation. These results suggest that the MglA protein is required for both control of reversal frequency and gliding speed and that in the absence of A motility, type IV pilus-dependent cell movement includes reversals at high frequency. Furthermore, mglAB mutants behave as if they were severely defective in A motility but only partially defective in S motility.  相似文献   

16.
Myxococcus xanthus exhibits multicellular interactions during vegetative growth and fruiting body formation. Gliding motility is needed for these interactions. The frizzy (frz) genes are required to control directed motility. FrzE is homologous to both CheA and CheY from Salmonella typhimurium. We used polyclonal antiserum raised against a fusion protein to detect FrzE in M. xanthus extracts by Western immunoblot analysis. FrzE was clearly present during vegetative growth and at much lower levels during development. A recombinant FrzE protein was overproduced in Escherichia coli, purified from inclusion bodies, and renatured. FrzE was autophosphorylated when it was incubated in the presence of [gamma-32P]ATP and MnCl2. Chemical analyses of the phosphorylated FrzE protein indicated that it contained an acylphosphate; probably phosphoaspartate. FrzE was phosphorylated in an intramolecular reaction. Based on these observations, we propose a model of the mechanism of FrzE phosphorylation in which autophosphorylation initially occurs at a conserved histidine residue within the "CheA" domain and then, via an intramolecular transphosphorylation, is transferred to a conserved aspartate residue within the "CheY" domain.  相似文献   

17.
18.
Gliding movements of individual isolated Myxococcus xanthus cells depend on the genes of the A-motility system (agl and cgl genes). Mutants carrying defects in those genes are unable to translocate as isolated cells on solid surfaces. The motility defect of cgl mutants can be transiently restored to wild type by extracellular complementation upon mixing mutant cells with wild-type or other motility mutant cells. To develop a molecular understanding of the function of a Cgl protein in gliding motility, we cloned the cglB wild-type allele by genetic complementation of the mutant phenotype. The nucleotide sequence of a 2.85-kb fragment was determined and shown to encode two complete open reading frames. The CglB protein was determined to be a 416-amino-acid putative lipoprotein with an unusually high cysteine content. The CglB antigen localized to the membrane fraction. The swarming and gliding defects of a constructed DeltacglB mutant were fully restored upon complementation with the cglB wild-type allele. Experiments with a cglB allele encoding a CglB protein with a polyhistidine tag at the C terminus showed that this allele also promoted wild-type levels of swarming and single-cell gliding, but was unable to stimulate DeltacglB cells to move. Possible functions of CglB as a mechanical component or as a signal protein in single cell gliding are discussed.  相似文献   

19.
A new putative sigma factor of Myxococcus xanthus.   总被引:5,自引:3,他引:2       下载免费PDF全文
A third putative sigma factor gene, sigC, has been isolated from Myxococcus xanthus by using the sigA gene (formerly rpoD of M. xanthus) as a probe. The nucleotide sequence of sigC has been determined, and an open reading frame of 295 residues (M(r) = 33,430) has been identified. The deduced amino acid sequence of sigC exhibits the features which are characteristic of other bacterial sigma factors. The characterization of a sigC-lacZ strain has demonstrated that sigC expression is induced immediately after cells enter into the developmental cycle and is dramatically reduced at the onset of sporulation. A deletion mutant of sigC grows normally in vegetative culture and is able to develop normally. However, in contrast to the wild-type cells, the sigC deletion mutant cells became capable of forming fruiting bodies and myxospores on semirich agar plates. This suggests that sigC may play a role in expression of genes involved in negatively regulating the initiation of fruiting body formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号