首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Ferrington DA  Yao Q  Squier TC  Bigelow DJ 《Biochemistry》2002,41(44):13289-13296
Alterations in expression levels of phospholamban (PLB) relative to the sarcoplasmic reticulum (SR) Ca-ATPase have been suggested to underlie defects of calcium regulation in the failing heart and other cardiac pathologies. To understand how variation in PLB expression relative to that of the Ca-ATPase can modulate calcium transport, we have investigated the inhibition of the Ca-ATPase by PLB in native SR membranes from slow-twitch skeletal and cardiac muscle and in reconstituted proteoliposomes. Quantitative immunoblotting in combination with affinity-purified protein standards was used to measure protein concentrations of PLB and of the Ca-ATPase. Functional inhibition of the Ca-ATPase was determined from both the calcium concentrations for half-maximal activation (Ca(1/2)) and the shift in the calcium concentrations following release of PLB inhibition (i.e., (Delta)Ca(1/2)) by incubation with monoclonal antibodies against PLB, which are equivalent to phosphorylation of PLB by cAMP-dependent protein kinase. We report that equivalent levels of PLB inhibition and antibody-induced activation ((Delta)Ca(1/2) = 0.25 +/- 0.02 microM) are observed in SR membranes from slow-twitch skeletal and cardiac muscle, where molar stoichiometries of PLB expressed per Ca-ATPase vary, respectively, from 0.9 +/- 0.1 to 4.1 +/- 0.8. Similar levels of inhibition to those observed in isolated SR vesicles were observed using reconstituted proteoliposomes following co-reconstitution of affinity-purified Ca-ATPase with PLB. These results indicate that total expression levels of one PLB per Ca-ATPase result in full inhibition of the Ca-ATPase and, based on the measured K(D) (140 +/- 30 microM), suggests one PLB complexed with two Ca-ATPase molecules is sufficient for full inhibition of activity. Therefore, the excess PLB expressed in the heart over that required for inhibition suggests a capability for graded responses of the Ca-ATPase activity to endogenous kinases and phosphatases that modulate the level of phosphorylation necessary to relieve inhibition of the Ca-ATPase by PLB.  相似文献   

2.
Ca2+ ATPase and calcium binding proteins were studied in cardiac and skeletal muscles of normal and dystrophic mice. In normal and dystrophic mice, Ca2+ ATPase was quite reduced in cardiac muscle compared to skeletal muscle and was, unlike skeletal muscle, insensitive to orthovanadate. Ca2+ ATPase in skeletal muscle of dystrophic mice was reduced as compared to normal mice. In both cases (normal and dystrophic), calcium binding proteins were the same (identical molecular weight). The effect of 2 drugs (Polymixine B and Bepridil) which decrease protein bound calcium was studied: the muscle proteins of dystrophic mice did not present the same sensitivity to Bepridil as controls. These findings suggest the existence of a calcium-related defect in skeletal and cardiac muscle of dystrophic mice.  相似文献   

3.
Rat liver endoplasmic reticulum (ER) membranes were investigated for the presence of proteins having structural relationships with sarcoplasmic reticulum (SR) proteins. Western immunoblots of ER proteins probed with polyclonal antibodies raised against the 100-kDa SR Ca-ATPase of rabbit skeletal muscle identified a single reactive protein of 100 kDa. Also, the antibody inhibited up to 50% the Ca-ATPase activity of isolated ER membranes. Antisera raised against the major intraluminal calcium binding protein of rabbit skeletal muscle SR, calsequestrin (CS), cross-reacted with an ER peptide of about 63 kDa, by the blotting technique. Stains-All treatment of slab gels showed that the cross-reactive peptide stained metachromatically blue, similarly to SR CS. Two-dimensional electrophoresis (Michalak, M., Campbell, K. P., and MacLennan, D. H. (1980) J. Biol. Chem. 255, 1317-1326) of ER proteins showed that the CS-like component of liver ER, similarly to skeletal CS, fell off the diagonal line, as expected from the characteristic pH dependence of the rate of mobility of mammalian CS. In addition, the CS-like component of liver ER was released from the vesicles by alkaline treatment and was found to be able to bind calcium, by a 45Ca overlay technique. From these findings, we conclude that a 100-kDa membrane protein of liver ER is the Ca-ATPase, and that the peripheral protein in the 63-kDa range is closely structurally and functionally related to skeletal CS.  相似文献   

4.
We used immunofluorescence techniques and confocal imaging to study the organization of the membrane skeleton of skeletal muscle fibers of mdx mice, which lack dystrophin. beta-Spectrin is normally found at the sarcolemma in costameres, a rectilinear array of longitudinal strands and elements overlying Z and M lines. However, in the skeletal muscle of mdx mice, beta-spectrin tends to be absent from the sarcolemma over M lines and the longitudinal strands may be disrupted or missing. Other proteins of the membrane and associated cytoskeleton, including syntrophin, beta-dystroglycan, vinculin, and Na,K-ATPase are also concentrated in costameres, in control myofibers, and mdx muscle. They also distribute into the same altered sarcolemmal arrays that contain beta-spectrin. Utrophin, which is expressed in mdx muscle, also codistributes with beta-spectrin at the mutant sarcolemma. By contrast, the distribution of structural and intracellular membrane proteins, including alpha-actinin, the Ca-ATPase and dihydropyridine receptors, is not affected, even at sites close to the sarcolemma. Our results suggest that in myofibers of the mdx mouse, the membrane- associated cytoskeleton, but not the nearby myoplasm, undergoes widespread coordinated changes in organization. These changes may contribute to the fragility of the sarcolemma of dystrophic muscle.  相似文献   

5.
The effect of corticotropin (ACTH1-39), synacthen (ACTH1-24) and hydrocortisone-hemisuccinate on the activity of Ca-ATPase of skeletal muscle sarcoplasmic reticulum (SR) and calcium (Ca) accumulation in SR vesicles has been studied. It has been shown that ACTH1-39 (I U per 100 g body weight) increased the activity of Ca-ATPase in skeletal muscle SR of rats, while hydrocortisone (5 mg per 100 g body weight) did not change the activity of Ca-ATPase in skeletal muscle SR. However, both hormones increase the total activity of ATPase. ACTH1-39 and ACTH1-24 (0.05-0.0005 U/ml) and hydrocortisone (2.8 X 10(-7)-2.8 X 10(-9) mol/l) increased in vitro Ca-ATPase isolated from rabbit skeletal muscle SR and accumulation of Ca is SR vesicles. At the same time, hydrocortisone reduced calcium/phosphorus ratio, while ACTH1-39 and ACTH1-24 increased it, i.e. hydrocortisone facilitated Ca accumulation in SR requiring more ATP energy, whereas ACTH facilitated Ca accumulation in SR requiring less ATP energy.  相似文献   

6.
Sarcolemmal properties implicated in the skeletal muscle disorder, malignant hyperthermia (MH), were examined using sarcolemma-membrane vesicles isolated from normal and MH-susceptible (MHS) porcine skeletal muscle. MHS and normal sarcolemma did not differ in the distribution of the major proteins, cholesterol or phospholipid content, vesicle size and sidedness, (Na+ + K+)-ATPase activity, ouabain binding, or adenylate cyclase activity (total and isoproterenol sensitivity). The regulation of the initial rates of MHS and normal sarcolemmal ATP-dependent calcium transport (calcium uptake after 1 min) by Ca2+ (K1/2 = 0.64-0.81 microM), calmodulin, and cAMP-dependent protein kinase were similar. However, when sarcolemmal calcium content was measured at either 2 or 20 min after the initiation of active calcium transport, a significant difference between MHS and normal sarcolemmal calcium uptake became apparent, with MHS sarcolemma accumulating approximately 25% less calcium than normal sarcolemma. Calcium transport by MHS and normal sarcolemma, at 2 or 20 min, had a similar calmodulin dependence (C1/2 = 150 nM), and was stimulated to a similar extent by cAMP-dependent protein kinase or calmodulin. Halothane inhibited MHS and normal sarcolemmal active calcium uptake in a similar fashion (half-maximal inhibition at 10 mM halothane), while dantrolene (30 microM) and nitrendipine (1 microM) had little effect on either MHS or normal sarcolemmal calcium transport. After 20 min of ATP-supported calcium uptake, 2 mM EGTA plus 10 microM sodium orthovanadate were added to initiate sarcolemmal calcium efflux. Following an initial rapid phase of calcium release, an extended slow phase of calcium efflux (k = 0.012 min-1) was similar for both MHS and normal sarcolemma vesicles. We conclude that although a number of sarcolemmal properties, including passive calcium permeability, are normal in MH, a small but significant defect in MHS sarcolemmal ATP-dependent calcium transport may contribute to the abnormal calcium homeostasis and altered contractile properties of MHS skeletal muscle.  相似文献   

7.
The calcium activation of the ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity of cardiac actomyosin reconstituted from bovine cardiac myosin and a complex of actin-tropomyosin-troponin extracted from bovine cardiac muscle at 37 degrees C was studied and compared with similar proteins from rabbit fast skeletal muscle. The proteins of the actin complex were identified by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Half-maximal activation of the cardiac actomyosin was seen at a calcium concentration of 1.2 +/- 0.002 (S.E. of mean) muM. A hybridized reconstituted actomyosin made with cardiac myosin and the actin-tropomyosin-troponin complex extracted from rabbit skeletal muscle was also activated by calcium but the half-maximal value was shifted to 0.65 +/- 0.02 (S.E. of mean) muM Ca2+. Homologous rabbit skeletal actomyosin showed half-maximal activation at 0.90 +/- 0.01 (S.E. of mean) muM Ca2+ and the value for a hybridized actomyosin made with rabbit skeletal myosin and the actin-complex from cardiac muscle was found at 1.4 +/- 0.03 (S.E. of mean) muM Ca2+ concentration. Kinetic analysis of the Ca2+ activated ATPase activity of reconstituted bovine cardiac actomyosin indicated some degree of cooperativity with respect to calcium. Double reciprocal plots of reconstituted actomyosins made with bovine cardiac actin complex were curvilinear and significantly different than those of reconstituted actomyosins made with the rabbit fast skeletal actin complex. The Ca2+-dependent cooperativity was of a mixed type as determined from Hill plots for homologous reconstituted bovine cardiac and rabbit fast skeletal actomyosin. The results show that cooperative interactions in reconstituted actomyosins were greater when the actin-tropomyosin-troponin complex was derived from cardiac than skeletal muscle.  相似文献   

8.
Sarcoglycans are a sub-complex of transmembrane proteins which are part of the dystrophin-glycoprotein complex (DGC). They are expressed above all in the skeletal, cardiac and smooth muscle. Although numerous studies have been conducted on the sarcoglycan sub-complex in skeletal and cardiac muscle, the manner of distribution and localization of these proteins along the non-junctional sarcolemma is still not clear. Furthermore, there are unclear data about the actual role of sarcoglycans in human skeletal muscle affected by sarcoglycanopathies. In our studies on human skeletal muscle, normal and pathological, we determined the localization, distribution and interaction of these glycoproteins. Our results, on normal human skeletal muscle, showed that the sarcoglycans can be localized both in the region of the sarcolemma over the I band and over the A band, hypothesizing a correlation between regions of the sarcolemma occupied by costameres and the metabolic type of the fibers (slow and fast). Our data on skeletal muscle affected by sarcoglycanopathy confirmed the hypothesis of a bidirectional signaling between sarcoglycans and integrins and the interaction of filamin2 with both sarcoglycans and integrins. In addition, we have recently demonstrated, in smooth muscle, the presence of alpha-SG, in contrast with data of other Authors. Finally, we analyzed the association between contractile activity and quantitative correlation between alpha- and epsilon-SG, in order to better define the arrangement of sarcoglycan subcomplex.  相似文献   

9.
The sarcoplasmic reticulum and glycogen pellet derived from rabbit skeletal muscle and the sarcolemma and sarcoplasmic reticulum from pig skeletal muscle contains NAD:dependent mono ADP-ribosyltransferase activity toward the guanidine analog, P- nitrobenzylidine aminoguanidine. No or little activity could be found in the sarcolemma or sarcoplasmic reticulum derived from canine cardiac muscle. Seventy percent of activity extracted from rabbit skeletal muscle is localized in the sarcoplasmic reticulum. The enzyme has a pH optimum of 7.4, and KM of 0.5 mM and 0.35 mM for NAD and p-nitro benzylidine aminoguanidine, respectively. Inorganic phosphate, KCl, and guanidine derivatives inhibit the reaction. Incubation of the sarcoplasmic reticulum or glycogen pellet with (adenylate-32P) NAD or [adenosine-14C(U)]-labeled NAD results in the incorporation of radioactivity into proteins. A large number of proteins are labeled in the sarcoplasmic reticulum fraction. The major labeled band in the glycogen pellet corresponds to a protein of molecular weight of 83 K.  相似文献   

10.
In the aging heart, decreased rates of calcium transport mediated by the SERCA2a isoform of the sarcoplasmic reticulum (SR) Ca-ATPase are responsible for the slower sequestration of cytosolic calcium and consequent prolonged muscle relaxation times. We report a 60% decrease in Ca-ATPase activity in the senescent Fischer 344 rat heart relative to that of young adult hearts; this functional decrease can be attributed, in part, to the 18% lower abundance of SERCA2a protein. Here, we show that the additional loss of activity is a result of increased 3-nitrotyrosine modification of the Ca-ATPase. Age-dependent increases in nitration of cardiac SERCA2a are identified using multiple analytical methods. In the young (adult) heart 1 molar equivalent of nitrotyrosine is distributed over at least five tyrosines within the Ca-ATPase, identified as Tyr(122), Tyr(130), Tyr(497), Tyr(586), and Tyr(990). In the senescent heart, the stoichiometry of nitration increases by more than two nitrotyrosines per Ca-ATPase, coinciding with the appearance of nitrated Tyr(294), Tyr(295), and Tyr(753). The abundant recovery of native analogues for each of the nitrated peptides indicates partial modification of multiple tyrosines within cardiac SERCA2a. In contrast, within skeletal muscle SERCA2a, a homogeneous pattern of nitration appears, with full site (1 mol/mol) nitration of Tyr(753), in young, with additional nitration of Tyr(294) and Tyr(295), in senescent muscle. The nitration of these latter vicinal sites correlates with diminished transport function in both striated muscle types, suggesting that these sites provide a mechanism for downregulation of ATP utilization by the Ca-ATPase under conditions of nitrative stress.  相似文献   

11.
We have studied the effects of the local anesthetic lidocaine, and the general anesthetic halothane, on the function and oligomeric state of the CA-ATPase in cardiac sarcoplasmic reticulum (SR). Oligomeric changes were detected by time-resolved phosphorescence anisotropy (TPA). Lidocaine inhibited and aggregated the Ca-ATPase in cardiac SR. Micromolar calcium or 0.5 M lithium chloride protected against lidocaine-induced inhibition, indicating that electrostatic interactions are essential to lidocaine inhibition of the Ca-ATPase. The phospholamban (PLB) antibody 2D12, which mimics PLB phosphorylation, had no effect on lidocaine inhibition of the Ca-ATPase in cardiac SR. Inhibition and aggregation of the Ca-ATPase in cardiac SR occurred at lower concentrations of lidocaine than necessary to inhibit and aggregate the Ca-ATPase in skeletal SR, suggesting that the cardiac isoform of the enzyme has a higher affinity for lidocaine. Halothane inhibited and aggregated the Ca-ATPase in cardiac SR. Both inhibition and aggregation of the Ca-ATPase by halothane were much greater in the presence of PLB antibody or when PLB was phosphorylated, indicating a protective effect of PLB on halothane-induced inhibition and aggregation. The effects of halothane on cardiac SR are opposite from the effects of halothane observed in skeletal SR, where halothane activates and dissociates the Ca-ATPase. These results underscore the crucial role of protein-protein interactions on Ca-ATPase regulation and anesthetic perturbation of cardiac SR.  相似文献   

12.
Phospholamban (PLB) and Sarcolipin (SLN) are integral membrane proteins that regulate muscle contractility via direct interaction with the Ca-ATPase in cardiac and skeletal muscle, respectively. The molecular details of these protein-protein interactions are as yet undetermined. Solution and solid-state NMR spectroscopies have proven to be effective tools for deciphering such regulatory mechanisms to a high degree of resolution; however, large quantities of pure recombinant protein are required for these studies. Thus, recombinant PLB and SLN production in Escherichia coli was optimized for use in NMR experiments. Fusions of PLB and SLN to maltose binding protein (MBP) were constructed and optimal conditions for protein expression and purification were screened. This facilitated the large-scale production of highly pure protein. To confirm their functionality, the biological activities of recombinant PLB and SLN were compared to those of their synthetic counterparts. The regulation of Ca-ATPase activity by recombinant PLB and SLN was indistinguishable from the regulation by synthetic proteins, demonstrating the functional integrity of the recombinant constructs and ensuring the biological relevance of our future structural studies. Finally, NMR spectroscopic conditions were established and optimized for use in investigations of the mechanism of Ca-ATPase regulation by PLB and SLN.  相似文献   

13.
The present study documents the existence in rat skeletal muscle plasma membrane (sarcolemma) of a distinct set of proteins, most of which represent unknown protein species, which can be phosphorylated in vitro by addition of cAMP-dependent or calcium-dependent protein kinases. Under the experimental conditions used, cAMP-regulated protein phosphorylation appeared to be the most important phosphorylation system in these membranes, followed by the calcium/phospholipid-regulated, and, with only a few substrates detected, the calcium/calmodulin-regulated systems. No specific substrate for cGMP-dependent protein kinase was found. In contrast, calcium/calmodulin-regulated protein phosphorylation was the most important in the sarcoplasmic reticulum fraction. Most of the cAMP-regulated and calcium/phospholipid-regulated sarcolemma phosphoproteins appeared to be intrinsic membrane proteins, at least three of which appeared to be phosphorylated by both these protein kinases. These phosphoproteins may represent membrane targets for multiple hormone or transmitter actions in skeletal muscle cells. Our results, therefore, suggest that protein phosphorylation systems, particularly those regulated by cAMP or calcium/phospholipid, may be more important in the regulation of sarcolemma function than hitherto believed.  相似文献   

14.
Four and a half LIM protein 1 (FHL1/SLIM1) is highly expressed in skeletal and cardiac muscle; however, the function of FHL1 remains unknown. Yeast two-hybrid screening identified slow type skeletal myosin-binding protein C as an FHL1 binding partner. Myosin-binding protein C is the major myosin-associated protein in striated muscle that enhances the lateral association and stabilization of myosin thick filaments and regulates actomyosin interactions. The interaction between FHL1 and myosin-binding protein C was confirmed using co-immunoprecipitation of recombinant and endogenous proteins. Recombinant FHL2 and FHL3 also bound myosin-binding protein C. FHL1 impaired co-sedimentation of myosin-binding protein C with reconstituted myosin filaments, suggesting FHL1 may compete with myosin for binding to myosin-binding protein C. In intact skeletal muscle and isolated myofibrils, FHL1 localized to the I-band, M-line, and sarcolemma, co-localizing with myosin-binding protein C at the sarcolemma in intact skeletal muscle. Furthermore, in isolated myofibrils FHL1 staining at the M-line appeared to extend partially into the C-zone of the A-band, where it co-localized with myosin-binding protein C. Overexpression of FHL1 in differentiating C2C12 cells induced "sac-like" myotube formation (myosac), associated with impaired Z-line and myosin thick filament assembly. This phenotype was rescued by co-expression of myosin-binding protein C. FHL1 knockdown using RNAi resulted in impaired myosin thick filament formation associated with reduced incorporation of myosin-binding protein C into the sarcomere. This study identified FHL1 as a novel regulator of myosin-binding protein C activity and indicates a role for FHL1 in sarcomere assembly.  相似文献   

15.
The plasma membrane of the heart muscle cell and its underlying cytoskeleton are vitally important to the function of the heart. Annexin A6 is a major cellular calcium and phospholipid binding protein. Here we show that annexin A6 copurifies with sarcolemma isolated from pig heart. Two pools of annexin A6 are present in the sarcolemma fraction, one dependent on calcium and one that resists extraction by the calcium chelator EGTA. Potential annexin A6 binding proteins in the sarcolemma fraction were identified using Far Western blotting. Two major annexin A6 binding proteins were identified as actin and annexin A6 itself. Annexin A6 bound to itself both in the presence and in the absence of calcium ions. Sites for self association were mapped by performing Western blots on proteolytic fragments of recombinant annexin A6. Annexin A6 bound preferentially not only to the N terminal fragment (domains I-IV, residues 1-352) but also to C-terminal fragments corresponding to domains V+VI and domains VII+VIII. Actin binding to annexin A6 was calcium-dependent and exclusively to the N-terminal fragment of annexin A6. A calcium-dependent complex of annexin A6 and actin may stabilize the cardiomyocyte sarcolemma during cell stimulation.  相似文献   

16.
We have studied the effects of C28R2, a basic peptide derived from the autoinhibitory domain of the plasma membrane Ca-ATPase, on enzyme activity, oligomeric state, and E1-E2 conformational equilibrium of the Ca-ATPase from skeletal and cardiac sarcoplasmic reticulum (SR). Time-resolved phosphorescence anisotropy (TPA) was used to determine changes in the distribution of Ca-ATPase among its different oligomeric species in SR. C28R2, at a concentration of 1-10 microM, inhibits the Ca-ATPase activity of both skeletal and cardiac SR (CSR). In skeletal SR, this inhibition by C28R2 is much greater at low (0.15 microM) than at high (10 microM) Ca2+, whereas in CSR the inhibition is the same at low and high Ca2+. The effects of the peptide on the rotational mobility of the Ca-ATPase correlated well with function, indicating that C28R2-induced protein aggregation and Ca-ATPase inhibition are much more Ca-dependent in skeletal than in CSR. In CSR at low Ca2+, phospholamban (PLB) antibody (functionally equivalent to PLB phosphorylation) increased the inhibitory effect of C28R2 slightly. Fluorescence of fluorescein 5-isothiocyanate-labeled SR suggests that C28R2 stabilizes the E1 conformation of the Ca-ATPase in skeletal SR, whereas in CSR it stabilizes E2. After the addition of PLB antibody, C28R2 still stabilizes the E2 conformational state of CSR. Therefore, we conclude that C28R2 affects Ca-ATPase activity, conformation, and self-association differently in cardiac and skeletal SR and that PLB is probably not responsible for the differences.  相似文献   

17.
Crystals and paracrystals of bovine cardiac tropomyosin and their mixtures with different combinations of troponin subunits were examined in the electron microscope after negative staining. Although the cardiac proteins gave most of the same crystalline and paracrystalline patterns as observed previously with skeletal muscle tropomyosin and troponin, two important differences were noted. Cardiac troponin T was incapable of forming hexagonal networks with either skeletal or cardiac muscle tropomyosins, while skeletal troponin T readily associated in this manner with tropomyosins from either tissue source. Also the characteristic paracrystalline pattern seen with skeletal muscle tropomyosin, troponin T and troponin C only in the presence of calcium was consistently obtained with mixtures of the corresponding cardiac components when calcium was absent.  相似文献   

18.
The data are presented concerning the role of cAMP-dependent phosphorylation of sarcoplasmic reticulum and sarcolemma proteins in the transport of Ca2+ through the cardiac skeletal and smooth muscle membranes. Phosphorylation of membrane proteins by soluble and membrane-bound cAMP-dependent protein kinases is shown to have a regulating effect on Mn2+-, Ca2+-ATPase activity and to change membrane permeability for Ca2+. The molecular mechanisms and the character of the interaction between the transport systems and the phosphorylating protein substrates have not been yet established.  相似文献   

19.
Sarcoglycans are transmembrane proteins that are members of the dystrophin complex. Sarcoglycans cluster together to form a complex, which is localized in the cell membrane of skeletal, cardiac, and smooth muscle fibers. However, it is still unclear whether or not sarcoglycans are restricted to the sarcolemma. To address this issue, we examined alpha-, beta-, delta-, and gamma-sarcoglycan expression in femoral skeletal muscle from control and dystrophin-deficient mice and rats using confocal microscopy and immunoelectron microscopy. Confocal microscopy of the tissues in cross-section showed that all sarcoglycans were detected under the sarcolemma in rats and control mice. delta- and gamma-sarcoglycan labeling demonstrated striations in the longitudinal section, suggesting that the proteins were expressed in the sarcoplasmic reticulum (SR) or transverse tubules (T-tubules). Moreover, such striations of both sarcoglycans were recognized in the dystrophin-deficient mouse skeletal muscle. Double labeling with phalloidin or alpha-actinin and delta- or gamma-sarcoglycan showed different labeling patterns, indicating that delta-sarcoglycan localization was distinct from that of gamma-sarcoglycan. Immunoelectron microscopy clarified that delta-sarcoglycan was localized in the terminal cisternae of the SR, while gamma-sarcoglycan was found in the terminal cisternae and longitudinal SR over I-bands but not over A-bands. These data demonstrate that delta- and gamma-sarcoglycans are components of the SR in skeletal muscle, suggesting that both sarcoglycans function independent of the dystrophin complex in the SR.  相似文献   

20.
Annexins are a major family of intracellular Ca2+-binding proteins which have been implicated in a variety of cellular functions. In this paper the authors have used confocal microscopy to compare the distribution of annexin VI in vibratome sections of the rat adult left ventricle and striated muscle of the rat oesophagus. It is shown that in rat cardiac myocytes annexin VI is associated with only the sarcolemma and intercalated discs. In contrast, it is demonstrated that in rat skeletal muscle annexin VI is associated with the sarcoplasmic reticulum, in addition to the plasma membrane, suggesting that annexin VI is regulating different processes in these tissues. Also shown is that in vibratome sections of the neonatal rat left ventricle, annexin VI has a different subcellular location to that observed in the terminally differentiated adult myocyte. In these differentiating neonatal cells annexins VI is also associated with specific subcellular structures. Furthermore, using confocal microscopy of isolated myocytes the authors demonstrate that the association of annexin VI with the sarcolemma is stable even after cells are treated with the intracellular calcium chelator BAPTA-AM, to greatly deplete cytosolic calcium levels. This demonstrates that annexin VI associates tightly with the sarcolemma, and suggests that components in addition to phospholipid are involved in binding annexin VI to the membrane. These results demonstrate that the subcellular location of annexin VI is differentially regulated, and suggest that annexin VI is required for a process or processes characteristic of the sarcolemma, and of the sarcoplasmic reticulum of skeletal but not of heart muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号