首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study shows that N-[3H]methylcarbamylcholine ([3H]MCC) binds to a single population of high-affinity/low-density (KD = 5.0 nM; Bmax = 8.2 fmol/mg of protein) nicotinic binding sites in the rat cerebellum. Also, there exists a single class of high-affinity binding sites (KD = 4.8 nM; Bmax = 24.2 fmol/mg of protein) in the cerebellum for the M1 specific muscarinic ligand [3H]pirenzepine. In contrast, the M2 ligand, [3H]AF-DX 116, appears to bind to two classes of binding sites, i.e., a high-affinity (KD = 3 nM)/low-capacity (Bmax = 11.7 fmol/mg of protein) class, and a second class of lower affinity (KD = 28.4 nM) and higher capacity (Bmax = 36.3 fmol/mg of protein) sites. The putative M3 selective ligand [3H]4-diphenylacetoxy-N-methylpiperidine also binds to two distinct classes of binding sites in cerebellar homogenates, one of high affinity (KD = 0.5 nM)/low capacity (Bmax = 19.5 fmol/mg of protein) and one of low affinity (KD = 57.5 nM)/high capacity (Bmax = 140.6 fmol/mg of protein). In experiments which tested the effects of cholinergic drugs on acetylcholine release from cerebellar brain slices, the nicotinic agonist MCC enhanced spontaneous acetylcholine release in a concentration-dependent manner, and the maximal increase in acetylcholine release (59.0-68.0%) occurred at 10(-7) M. The effect of MCC to increase acetylcholine release was Ca2+-dependent and tetrodotoxin-insensitive, suggesting an action on cholinergic terminals. Also, the MCC-induced increase in acetylcholine release was effectively antagonized by dihydro-beta-erythroidine, d-tubocurarine, and kappa-bungarotoxin, but was insensitive to either atropine or alpha-bungarotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The pharmacological specificity and the regional distribution of the N-methyl-D-aspartate receptor-associated 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) binding sites in human postmortem brain tissue were determined by binding studies using (+)-[3H]MK-801. Scatchard analysis revealed a high-affinity (KD = 0.9 +/- 0.2 nM, Bmax = 499 +/- 33 fmol/mg of protein) and a low-affinity (KD = 3.6 +/- 0.9 nM, Bmax = 194 +/- 44 fmol/mg of protein) binding site. The high-affinity site showed a different regional distribution of receptor density (cortex greater than hippocampus greater than striatum) compared to the low-affinity binding site (cerebellum greater than brainstem). The rank order pharmacological specificity and stereoselectivity of the high-(cortex) and low-(cerebellar) affinity binding sites were identical. However, all compounds tested showed greater potency at the high-affinity site in cortex. The results indicate that (+)-[3H]MK-801 binding in human postmortem brain tissue shows pharmacological and regional specificity.  相似文献   

3.
Nicotine induced a phasic contraction in the rabbit urinary bladder. The response was abolished by hexamethonium and partially reduced by atropine and capsaicin. Simultaneous atropine and capsaicin treatment did not abolish the contraction. These findings suggest that the response to nicotine is due to acetylcholine, tachykinins, and unknown mediator release. In contrast, nicotine-induced contraction diminished following the chronic nicotine treatment without a change of its pharmacological properties. These results suggest the possibility that chronic nicotine treatment causes a decrease in nicotinic receptor numbers. Therefore, the binding properties of (-)-[3H]nicotine on rabbit urinary detrusor muscle membrane fractions were studied to evaluate the effects of chronic nicotine treatment on nicotinic receptors. Specific (-)-[3H]nicotine binding reached saturation and Scatchard plots were curvilinear, suggesting the existence of two different affinity sites for (-)-[3H]nicotine. Dissociation constants (KD) and maximum binding sites (Bmax) were KD1 = 4.91 +/- 1.88 nM, Bmax1 = 2.42 +/- 0.22 fmol/mg protein and KD2 = 263 +/- 56 nM, Bmax2 = 25.0 +/- 4.3 fmol/mg protein. In urinary bladder membrane fractions from chronic nicotine-treated rabbits, KD and Bmax values were KD1 = 3.96 +/- 0.38 nM, Bmax1 = 1.07 +/- 0.25 fmol/mg protein and KD2 = 249 +/- 12 nM, Bmax2 = 10.8 +/- 1.5 fmol/mg protein. Dissociation constants for both sites following chronic nicotine treatment did not change but maximum binding site numbers for both sites significantly decreased (p less than 0.05). These results suggest that the decrease in contractile response evoked by nicotine after chronic nicotine treatment in rabbit urinary bladder is due to a decrease in numbers of nicotinic receptors.  相似文献   

4.
[3H]5-hydroxytryptamine ([3H]serotonin) binds with high affinity (KD 2-12 nM) to a finite number of sites on brain astroglial cells. The number of binding sites in the C6 glioma line is decreased significantly (Bmax = 315 versus 30 fmol/mg) by homogenization. In intact primary cultures, derived from newborn rat brain, the number of binding sites is far greater in cultures of immature astrocytes than in cultures treated with dibutyryl cyclic AMP (Bmax = 1,520 versus 580 fmol/mg). A role for these receptors in development is suggested.  相似文献   

5.
Heterogeneity of beta-adrenoreceptors in guinea pig alveolar type II cells   总被引:1,自引:0,他引:1  
[3H]Dihydroalprenolol ([3H]DHA) binding to guinea pig alveolar type II cell membrane revealed the presence of both high (KD = 0.38 nM) and low (KD = 4.2 nM) affinity beta-adrenoreceptors. The low affinity site had a higher binding capacity (Bmax = 245.6 fmol/mg protein) than the high affinity site (Bmax = 71.7 fmol/mg protein). Displacement of [3H]DHA by practolol, a selective beta 1 agent, confirmed the existence of two species of adrenoreceptors, corresponding to 21% high affinity (beta 1) and 79% low affinity (beta 2), respectively.  相似文献   

6.
Solubilization of an Adenosine Uptake Site in Brain   总被引:1,自引:1,他引:0  
Procedures are described for the solubilization of adenosine uptake sites in guinea pig and rat brain tissue. Using [3H]nitrobenzylthioinosine [( 3H]NBI) the solubilized site is characterized both kinetically and pharmacologically. The binding is dependent on protein concentration and is saturable, reversible, specific, and high affinity in nature. The KD and Bmax of guinea pig extracts are 0.13 +/- 0.02 nM and 133 +/- 18 fmol/mg protein, respectively, with linear Scatchard plots obtained routinely. Similar kinetic parameters are observed in rat brain. Adenosine uptake inhibitors are the most potent inhibitors of [3H]NBI binding with the following order of potency, dilazep greater than hexobendine greater than dipyridamole. Adenosine receptor ligands are much less potent inhibitors of binding, and caffeine is without effect. The solubilized adenosine uptake site is, therefore, shown to have virtually identical properties to the native membrane site. The binding of the adenosine A1 receptor agonist [3H]cyclohexyladenosine [( 3H]CHA) to the solubilized brain extract was also studied and compared with that of [3H]NBI. In contrast to the [3H]NBI binding site [3H]CHA binds to two apparent populations of adenosine receptor, a high-affinity site with a KD of 0.32 +/- 0.06 nM and a Bmax of 105 +/- 30 fmol/mg protein and a lower-affinity site with a KD of 5.50 +/- 0.52 nM and Bmax of 300 +/- 55 fmol/mg protein. The pharmacology of the [3H]CHA binding site is consistent with that of the adenosine receptor and quite distinct from that of the uptake [( 3H]NBI binding) site. Therefore, we show that the adenosine uptake site can be solubilized and that it retains both its binding and pharmacologic properties in the solubilized state.  相似文献   

7.
Characterization of Opioid Receptors in Cultured Neurons   总被引:1,自引:1,他引:0  
The appearance of mu-, delta-, and kappa-opioid receptors was examined in primary cultures of embryonic rat brain. Membranes prepared from striatal, hippocampal, and hypothalamic neurons grown in dissociated cell culture each exhibited high-affinity opioid binding sites as determined by equilibrium binding of the universal opioid ligand (-)-[3H]bremazocine. The highest density of binding sites (per mg of protein) was found in membranes prepared from cultured striatal neurons (Bmax = 210 +/- 40 fmol/mg protein); this density is approximately two-thirds that of adult striatal membranes. By contrast, membranes of cultured cerebellar neurons and cultured astrocytes were devoid of opioid binding sites. The opioid receptor types expressed in cultured striatal neurons were characterized by equilibrium binding of highly selective radioligands. Scatchard analysis of binding of the mu-specific ligand [3H]D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin to embryonic striatal cell membranes revealed an apparent single class of sites with an affinity (KD) of 0.4 +/- 0.1 nM and a density (Bmax) of 160 +/- 20 fmol/mg of protein. Specific binding of (-)-[3H]bremazocine under conditions in which mu- and delta-receptor binding was suppressed (kappa-receptor labeling conditions) occurred to an apparent single class of sites (KD = 2 +/- 1 nM; Bmax = 40 +/- 15 fmol/mg of protein). There was no detectable binding of the selective delta-ligand [3H]D-Pen2,D-Pen5-enkephalin. Thus, cultured striatal neurons expressed mu- and kappa-receptor sites at densities comparable to those found in vivo for embryonic rat brain, but not delta-receptors.  相似文献   

8.
Parameters affecting the binding of [3H]glycine to membrane fractions isolated from the cerebral cortex, midbrain, cerebellum, medulla oblongata, and spinal cord of the rat were investigated in a Na+-free medium. A [3H]glycine binding assay was established in which the binding was specific, saturable, pH-sensitive, and reversible. Conditions were chosen in an effort to minimize binding to glycine uptake sites. From data on specific [3H]glycine binding Scatchard plots were prepared and the KD and Bmax values were calculated. Two glycine binding sites (high and low affinity) were identified only in the medulla (KD: 44, 211 nM; Bmax: 361, 1076 fmol/mg protein) and spinal cord (KD: 19, 104 nM; Bmax: 105, 486 fmol/mg protein). The ranges of the KD and Bmax values for the other three areas studied were 59 to 144 nM and 882 to 3401 fmol/mg protein, respectively. When the glycine content of each area, expressed as fmol/neuron, was plotted against the respective KD (high affinity), a negative correlation was found (r = --0.90; p less than 0.05). A similar negative correlation was found between the glycine content and Bmax (r = --0.88; p less than 0.05). Hill plots indicated a slope of essentially 1.0 for all areas. GABA, taurine, strychnine, diazepam, bicuculline, and imipramine had little or no effect on [3H]glycine binding.  相似文献   

9.
The binding properties of N6-cyclohexyl [3H]adenosine ( [3H]CHA) and 1,3-diethyl-8-[3H]phenylxanthine ( [3H]DPX) in rat forebrain membrane are compared. The kinetic parameters of binding for each ligand are quite distinct, with [3H]CHA displaying two populations of binding sites (KD = 0.4 +/- 0.05 nM and 4.2 +/- 0.3 nM; Bmax = 159 +/- 17 and 326 +/- 21 fmol/mg protein), whereas [3H]DPX yielded monophasic Scatchard plots (KD = 13.9 +/- 1.1 nM; Bmax = 634 +/- 27 fmol/mg protein). The metals copper, zinc, and cadmium are potent inhibitors of [3H]CHA binding, with respective IC50 concentrations of 36 microM, 250 microM, and 70 microM. Copper is a much less potent inhibitor of [3H]DPX binding (IC50 = 350 microM). The inhibitory effect of copper on both [3H]CHA and [3H]DPX binding is apparently irreversible, as membranes pretreated with copper cannot be washed free of its inhibitory effect. The inhibitory effect of both copper and zinc on [3H]CHA binding was reversed by the guanine nucleotide Gpp(NH)p. [3H]DPX binding is only partially inhibited by zinc and cadmium (60% of specific binding remains unaffected), suggesting that this adenosine receptor ligand binds to two separate sites. Guanine nucleotides had no effect on the inhibition of [3H]DPX binding by either copper or zinc. Differential thermal and proteolytic denaturation profiles are also observed for [3H]CHA and [3H]DPX binding, with the former ligand binding site being more labile in both cases. Stereospecificity is observed in the inhibition of both [3H]CHA and [3H]DPX binding, with L-N-phenylisopropyladenosine (PIA) being 50-fold more potent than D-PIA in both cases. Evidence is therefore provided that adenosine receptor agonists and antagonists have markedly different binding properties to brain adenosine receptors.  相似文献   

10.
The binding of alpha-[3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA), a selective ligand for the ion channel-linked quisqualate receptor, was evaluated in Triton X-100-treated membranes of human cerebral cortex. The presence of chaotropic ions produced divergent effects on specific [3H]AMPA binding: A twofold increase in the binding was observed with thiocyanide at 100 mM, although iodide (100 mM) and perchlorate (100 mM) reduced the binding. Chemical modifications of the sulfhydryl group with p-chloromercuriphenylsulfonic acid (PCMBS) produced threefold increases in specific [3H]-AMPA binding in the absence of KSCN as well as in the presence of KSCN. Treatment with dithiothreitol restored the enhanced specific [3H]AMPA binding by PCMBS to the basal level. Although specific [3H]AMPA binding in the absence of KSCN showed a single site (KD = 220 nM, Bmax = 235 fmol/mg of protein), curvilinear Scatchard plots of specific [3H]AMPA binding in the presence of 100 mM KSCN can be resolved into two binding sites with the following parameters: KD1 = 5.82 nM, Bmax1 = 247 fmol/mg of protein; KD2 = 214 nM, Bmax2 = 424 fmol/mg of protein. Quisqualate and AMPA were the most potent inhibitors of the [3H]AMPA binding in the presence of KSCN. Potent inhibitors of the binding included beta-N-oxalylamino-L-alanine (L-BOAA), cysteine-S-sulfate, L-glutamate, 6-cyano-7-nitroquinoxaline-2,3-dione, and 6,7-dinitroquinoxaline-2,3-dione. Kainate, L-homocysteine sulfinic acid, and L-homocysteic acid were active with an IC50 value of a micromolar concentration, whereas L-cysteic acid and L-cysteine sulfinic acid were weakly active.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The H3 receptor is a high-affinity histamine receptor that inhibits release of several neurotransmitters, including histamine. We have characterized H3 receptor binding in bovine brain and developed conditions for its solubilization. Particulate [3H]histamine binding showed an apparently single class of sites (KD = 4.6 nM; Bmax = 78 fmol/mg of protein). Of the detergents tested, digitonin at a detergent/protein ratio of 1:1 (wt/wt) yielded the greatest amount of solubilized receptors, typically 15-30% of particulate binding. Neither equilibrium binding of [3H]histamine to receptors (KD = 6.1 nM; Bmax = 92 fmol/mg of protein) nor the inhibitor profile was substantially altered by digitonin solubilization. However, solubilization did increase the rate of [3H]histamine association with and dissociation from the receptor. Size-exclusion chromatography indicated an apparent molecular weight of 220,000 for the solubilized receptor, and peak binding from this column retained its guanine nucleotide sensitivity. These last two observations are consistent with the solubilized receptor occurring in complex with a guanine nucleotide-binding protein.  相似文献   

12.
Using quantitative autoradiography, we have investigated the binding sites for the potent competitive non-N-methyl-D-aspartate (non-NMDA) glutamate receptor antagonist [3H]6-cyano-7-nitro-quinoxaline-2,3-dione ([3H]-CNQX) in rat brain sections. [3H]CNQX binding was regionally distributed, with the highest levels of binding present in hippocampus in the stratum radiatum of CA1, stratum lucidum of CA3, and molecular layer of dentate gyrus. Scatchard analysis of [3H]CNQX binding in the cerebellar molecular layer revealed an apparent single binding site with a KD = 67 +/- 9.0 nM and Bmax = 3.56 +/- 0.34 pmol/mg protein. In displacement studies, quisqualate, L-glutamate, and kainate also appeared to bind to a single class of sites. However, (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) displacement of [3H]CNQX binding revealed two binding sites in the cerebellar molecular layer. Binding of [3H]AMPA to quisqualate receptors in the presence of potassium thiocyanate produced curvilinear Scatchard plots. The curves could be resolved into two binding sites with KD1 = 9.0 +/- 3.5 nM, Bmax = 0.15 +/- 0.05 pmol/mg protein, KD2 = 278 +/- 50 nM, and Bmax = 1.54 +/- 0.20 pmol/mg protein. The heterogeneous anatomical distribution of [3H]CNQX binding sites correlated to the binding of L-[3H]glutamate to quisqualate receptors and to sites labeled with [3H]AMPA. These results suggest that the non-NMDA glutamate receptor antagonist [3H]CNQX binds with equal affinity to two states of quisqualate receptors which have different affinities for the agonist [3H]AMPA.  相似文献   

13.
Purified bovine myometrial plasma membranes were used to characterize prostaglandin (PG) E2 binding. Two binding sites were found: a high-affinity site with a dissociation constant (KD) of 0.27 +/- 0.08 nM and maximum binding (Bmax) of 102.46 +/- 8.6 fmol/mg membrane protein, and a lower affinity site with a KD = 6.13 +/- 0.50 nM and Bmax = 467.93 +/- 51.63 fmol/mg membrane protein. Membrane characterization demonstrated that [3H]PGE2 binding was localized in the plasma membrane. In binding competition experiments, unlabelled PGE1 displaced [3H]PGE2 from its receptor at the same concentrations as did PGE2. Neither PGF2 alpha nor PGD2 effectively competed for [3H]PGE2 binding. Adenylyl cyclase activity was inhibited at concentrations of PGE2 that occupy the high-affinity receptor. These data demonstrate that two receptor sites, or states of binding within a single receptor, are present for PGE2 in purified myometrial membranes. PGE2 inhibition of adenylyl cyclase activity support the view that cAMP has a physiological role in the regulation of myometrial contractility by PGE2.  相似文献   

14.
Analysis of the equilibrium binding of [3H]-neurotensin(1-13) at 25 degrees C to its receptor sites in bovine cortex membranes indicated a single population of sites with an apparent equilibrium dissociation constant (KD) of 3.3 nM and a density (Bmax) of 350 fmol/mg protein (Hill coefficient nH = 0.97). Kinetic dissociation studies revealed the presence of a second class of sites comprising less than 10% of the total. KD values of 0.3 and 2.0 nM were obtained for the higher and lower affinity classes of sites, respectively, from association-dissociation kinetic studies. The binding of [3H]neurotensin was decreased by cations (monovalent and divalent) and by a nonhydrolysable guanine nucleotide analogue. Competition studies gave a potency ranking of [Gln4]neurotensin greater than neurotensin(8-13) greater than neurotensin(1-13). Smaller neurotensin analogues and neurotensin-like peptides were unable to compete with [3H]neurotensin. Stable binding activity for [3H]neurotensin in detergent solution (Kd = 5.5 nM, Bmax = 250 fmol/mg protein, nH = 1.0) was obtained in 2% digitonin/1 mM Mg2+ extracts of membranes which had been preincubated (25 degrees C, 1 h) with 1 mM Mg2+ prior to solubilization. Association-dissociation kinetic studies then revealed the presence of two classes of sites (KD1 = 0.5 nM, KD2 = 3.6 nM) in a similar proportion to that found in the membranes. The solubilized [3H]-neurotensin activity retained its sensitivity to cations and guanine nucleotide.  相似文献   

15.
The ontogeny of chick brain and heart ventricle calcium antagonist binding sites was determined, using [3H]nitrendipine ([3H]NDP), as the ligand. The binding of [3H]NDP to adult heart and brain was kinetically very similar, with the former displaying a KD of 0.28 +/- 0.02 nM and a Bmax of 138 +/- 17 fmol/mg protein, and the latter a KD of 0.30 +/- 0.02 nM and a Bmax of 160 +/- 12 fmol/mg protein. The binding site in both brain and heart was highly specific for dihydropyridine calcium antagonists, such as nifedipine, nimodipine, and nisoldipine, since these drugs were several orders of magnitude more potent as inhibitors of [3H]NDP binding than verapamil, methoxyverapamil, or diltiazem. The developmental appearance of [3H]NDP binding sites in brain was rather gradual, with adult levels being attained just prior to birth. This was in contrast to the profile in heart ventricle which showed essentially adult levels at seven days gestation. The acquisition of [3H]NDP binding sites in chick brain roughly paralleled the onset of neuronal maturation and functional activity. In both chick brain and heart, verapamil and methoxyverapamil were weak inhibitors of [3H]NDP binding. However, the inhibition of binding in both tissues was markedly biphasic, with only 50% of the binding sites being susceptible to inhibition by each agent, suggesting that multiple calcium antagonist binding sites may exist in both tissues.  相似文献   

16.
T V Dam  R Quirion 《Peptides》1986,7(5):855-864
[3H]Substance P ([3H]SP) was used to characterize substance P (SP) receptor binding sites in guinea pig brain using membrane preparations and in vitro receptor autoradiography. Curvilinear Scatchard analysis shows that [3H]SP binds to a high affinity site (Kd = 0.5 nM) with a Bmax of 16.4 fmol/mg protein and a low affinity site (Kd = 29.6 nM) with a Bmax of 189.1 fmol/mg protein. Monovalent cations generally inhibit [3H]SP binding while divalent cations substantially increased it. The ligand selectivity pattern is generally similar to the one observed in rat brain membrane preparation with SP being more potent than SP fragments and other tachykinins. However, the potency of various nucleotides is different with GMP-PNP greater than GDP greater than GTP. The autoradiographic distribution of [3H]SP binding sites shows that high amounts of sites are present in the hippocampus, striatum, olfactory bulb, central nucleus of the amygdala, certain thalamic nuclei and superior colliculus. The cortex is moderately enriched in [3H]SP binding sites while the substantia nigra contains only very low amounts of sites. Thus, the autoradiographic distribution of SP binding sites is fairly similar in both rat and guinea pig brain.  相似文献   

17.
The full agonist [3H]UK 14304 [5-bromo-6-(2-imidazolin-2-yl-amino)-quinoxaline] was used to characterize alpha 2-adrenoceptors in postmortem human brain. The binding at 25 degrees C was rapid (t1/2, 4.6 min) and reversible (t1/2, 14.1 min), and the KD determined from the kinetic studies was 0.48 nM. In frontal cortex, the rank order of potency of adrenergic drugs competing with [3H]UK 14304 or [3H]clonidine showed the specificity for an alpha 2A-adrenoceptor: UK 14304 approximately equal to yohimbine approximately equal to oxymetazoline approximately equal to clonidine greater than phentolamine approximately equal to (-)-adrenaline greater than idazoxan approximately equal to (-)-noradrenaline greater than phenylephrine greater than (+/-)-adrenaline much greater than corynanthine greater than prazosin much greater than (+/-)-propranolol. GTP induced a threefold decrease in the affinity of [3H]UK 14304, with no alteration in the maximum number of binding sites, suggesting that the radioligand labelled the high-affinity state of the alpha 2-adrenoceptor. In the frontal cortex, analyses of saturation curves indicated the existence of a single population of noninteracting sites for [3H]UK 14304 (KD = 0.35 +/- 0.13 nM; Bmax = 74 +/- 9 fmol/mg of protein). In other brain regions (hypothalamus, hippocampus, cerebellum, brainstem, caudate nucleus, and amygdala) the Bmax ranged from 68 +/- 7 to 28 +/- 4 fmol/mg of protein. No significant changes in the KD values were found in the different regions examined. The binding of [3H]UK 14304 was not affected by age, sex or postmortem delay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The specific binding of L-N6-[3H]phenylisopropyladenosine (L-[3H]PIA) to solubilized receptors from rat brain membranes was studied. The interaction of these receptors with relatively low concentrations of L-[3H]PIA (0.5-12.0 nM) in the presence of Mg2+ showed the existence of two binding sites for this agonist, with respective dissociation constant (KD) values of 0.24 and 3.56 nM and respective receptor number (Bmax) values of 0.28 +/- 0.03 and 0.66 +/- 0.05 pmol/mg of protein. In the presence of GTP, the binding of L-[3H]PIA also showed two sites with KD values of 24.7 and 811.5 nM and Bmax values of 0.27 +/- 0.09 and 0.93 +/- 0.28 pmol/mg of protein for the first and the second binding site, respectively. Inhibition of specific L-[3H]PIA binding by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (0.1-300 nM) performed with the same preparations revealed two DPCPX binding sites with Ki values of 0.29 and 13.5 nM, respectively. [3H]DPCPX saturation binding experiments also showed two binding sites with respective KD values of 0.81 and 10.7 nM and respective Bmax values of 0.19 +/- 0.02 and 0.74 +/- 0.06 pmol/mg of protein. The results suggest that solubilized membranes from rat brain possess two adenosine receptor subtypes: one of high affinity with characteristics of the A1 subtype and another with lower affinity with characteristics of the A3 subtype of adenosine receptor.  相似文献   

19.
The equilibrium binding characteristics of the tritiated GABAA agonist, 5-aminomethyl-3-isothiazolol (thiomuscimol) are described. Using the filtration technique to separate bound- from free-ligand, [3H]thiomuscimol was shown to bind to the GABA(A) receptor site(s) in a saturable manner with a Kd value of 28+/-6.0 nM and a Bmax value of 50+/-4.0 fmol/mg original tissue. In parallel binding experiments, the Kd and Bmax values for [3H]muscimol were determined to be 5.4+/-2.8 nM and 82+/-11 fmol/mg original tissue, respectively. In binding assays using the centrifugation technique, Kd and Bmax values for [3H]thiomuscimol were found to be 116+/-22 nM and 154 13 fmol/mg original tissue, respectively, whereas a Kd value of 16+/-1.8 nM and a Bmax value of 155+/-8.0 fmol/mg original tissue were determined for [3H]muscimol. In comparative inhibition studies using the GABA(A) antagonist SR 95531 and a series of specific GABAA agonists, the binding sites for [3H]thiomuscimol and [3H]muscimol were shown to exhibit similar pharmacological profiles. Autoradiographic studies disclosed similar regional distribution of [3H]thiomuscimol and [3H]muscimol binding sites in rat brain. Highest densities of binding sites were detected in cortex, hippocampus, and cerebellum, whereas low densities were measured in the midbrain structures of rat cortex. In conclusion, the equilibrium GABA(A) receptor binding characteristics of [3H]thiomuscimol are very similar to those of [3H]muscimol.  相似文献   

20.
Calcium antagonist binding sites were solubilized from rat brain membranes using the detergent 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulfonate (CHAPS). CHAPS-solubilized [3H]nitrendipine binding sites are saturable over a range of 0.05-4 nM and Scatchard analysis reveals a single, high-affinity (KD = 0.49 +/- 0.10 nM), low-capacity (Bmax = 56 +/- 4 fmol/mg of protein) binding site. Reversible ligand competition experiments using solubilized binding sites demonstrated appropriate pharmacologic specificity, with dihydropyridines (nifedipine = nitrendipine greater than Bay K 8644) completely displacing binding, verapamil partially displacing binding, and diltiazem enhancing binding, as previously described in membrane preparations. Lyophilized Crotalus atrox venom was purified by ion exchange chromatography followed by gel filtration to a single peptide band on sodium dodecyl sulfatepolyacrylamide gel electrophoresis. This fraction of molecular weight 60,000 competitively inhibits [3H]nitrendipine binding to both membrane and soluble preparations with an IC50 of 5 micrograms/ml. This polypeptide should serve as a useful ligand for future efforts in purifying the dihydropyridine calcium channel binding site in brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号