首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an earlier study we demonstrated that epidermal growth factor (EGF) increases the cellular accumulation of cAMP in perfused rat hearts by stimulating the cardiac adenylate cyclase via a stimulatory GTP-binding protein (Nair, B. G., Rashed, H. M., and Patel, T. B. (1989) Biochem. J. 264, 563-571). Employing antiserum, CS1, generated against a synthetic decapeptide RMHLRQYELL representing the carboxyl terminus of Gs alpha, the involvement of Gs in mediating the effects of EGF on cardiac adenylate cyclase was further investigated. The CS1 antiserum specifically recognized two forms, (52 and 40 kDa) of Gs alpha in rat cardiac membranes; the 52 kDa being the predominant species. In functional assays of adenylate cyclase activity, the CS1 antiserum did not alter either aluminum fluoride- or forskolin-stimulated adenylate cyclase activity. Similarly, basal adenylate cyclase activity in the absence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) was also not altered by the CS1 antiserum. However, as compared with controls performed in the presence of non-immune serum, preincubation of cardiac membranes with the CS1 antiserum resulted in a concentration-dependent inhibition of Gpp(NH)p-, isoproterenol-, and EGF-stimulated activities. In experiments which monitored Gi function as the ability of different G(pp)NHp, (-)N6-(R-phenylisopropyl)adenosine and carbachol to inhibit forskolin-stimulated adenylate cyclase, CS1 antiserum by inhibiting Gs, increased the apparent activity of Gi. Overall, our data demonstrate that the CS1 antiserum can specifically inhibit Gs function and therefore the stimulation of adenylate cyclase by agonists whose actions are mediated by Gs. In this respect, the data presented here demonstrate that Gs is the G-protein involved in mediating EGF-elicited stimulation of cardiac adenylate cyclase. Additionally, the finding that CS1 antiserum can overcome the effects of Gpp(NH)p on Gs, but not Gi, suggests that the carboxyl-terminal region of Gs alpha is important in the interactions with GTP or its analogs.  相似文献   

2.
Differential modes for beta(1)- and beta(2)-adrenergic receptor (AR) regulation of adenylyl cyclase in cardiomyocytes is most consistent with spatial regulation in microdomains of the plasma membrane. This study examines whether caveolae represent specialized subdomains that concentrate and organize these moieties in cardiomyocytes. Caveolae from quiescent rat ventricular cardiomyocytes are highly enriched in beta(2)-ARs, Galpha(i), protein kinase A RIIalpha subunits, caveolin-3, and flotillins (caveolin functional homologues); beta(1)-ARs, m(2)-muscarinic cholinergic receptors, Galpha(s), and cardiac types V/VI adenylyl cyclase distribute between caveolae and other cell fractions, whereas protein kinase A RIalpha subunits, G protein-coupled receptor kinase-2, and clathrin are largely excluded from caveolae. Cell surface beta(2)-ARs localize to caveolae in cardiomyocytes and cardiac fibroblasts (with markedly different beta(2)-AR expression levels), indicating that the fidelity of beta(2)-AR targeting to caveolae is maintained over a physiologic range of beta(2)-AR expression. In cardiomyocytes, agonist stimulation leads to a marked decline in the abundance of beta(2)-ARs (but not beta(1)-ARs) in caveolae. Other studies show co-immunoprecipitation of cardiomyocytes adenylyl cyclase V/VI and caveolin-3, suggesting their in vivo association. However, caveolin is not required for adenylyl cyclase targeting to low density membranes, since adenylyl cyclase targets to low buoyant density membrane fractions of HEK cells that lack prototypical caveolins. Nevertheless, cholesterol depletion with cyclodextrin augments agonist-stimulated cAMP accumulation, indicating that caveolae function as negative regulators of cAMP accumulation. The inhibitory interaction between caveolae and the cAMP signaling pathway as well as domain-specific differences in the stoichiometry of individual elements in the beta-AR signaling cascade represent important modifiers of cAMP-dependent signaling in the heart.  相似文献   

3.
In order to explain the attenuated sympathetic support during the development of heart failure, the status of -adrenergic mechanisms in the failing myocardium was assessed by employing cardiomyopathic hamsters (155–170 days old) at moderate degree of congestive heart failure. The norepinephrine turnover rate was increased but the norepinephrine content was decreased in cardiomyopathic hearts. The number and the affinity of receptors in the sarcolemmal preparations were not changed in these hearts at moderate stage of congestive heart failure. While the basal adenylyl cyclase activity was not altered in sarcolemma, the stimulation of enzyme activity by NaF, forskolin, Gpp(NH)p or epinephrine was depressed in hearts from these cardiomyopathic hamsters. Since G-proteins are involved in modifying the adenylyl cyclase activity, the functional and bioactivities as well as contents of both Gs and Gi proteins were determined in the cardiomyopathic heart sarcolemma. The functional stimulation of adenylyl cyclase by cholera toxin, which activates Gs proteins, was markedly depressed whereas that by Pertussis toxin, which inhibits Gi proteins, was markedly augmented in cardiomyopathic hearts. The cholera toxin and pertussis toxin catalyzed ADP-ribosylation was increased by 37 and 126%, respectively; this indicated increased bioactivities of both Gs and Gi proteins in experimental preparations. The immunoblot analysis suggested 74 and 124% increase in Gs and Gi contents in failing hearts, respectively. These results suggest that depressed adenylyl cyclase activation in cardiomyopathic hamsters may not only be due to increased content and bioactivity of Gi proteins but the functional uncoupling of Gs proteins from the adenylyl cyclase enzyme may also be involved at this stage of heart failure.  相似文献   

4.
The chronic stimulation of certain G protein-coupled receptors promotes cardiomyocyte hypertrophy and thus plays a pivotal role in the development of human heart failure. The beta-adrenergic receptors (β-AR) are unique among these in that they signal via Gs, whereas others, such as the alpha1-adrenergic (α1-AR) and endothelin-1 (ET-1) receptors, predominantly act through Gq. In this study, we investigated the potential role of regulator of G protein signalling 2 (RGS2) in modulating the hypertrophic effects of the β-AR agonist isoproterenol (ISO) in rat neonatal ventricular cardiomyocytes. We found that ISO-induced hypertrophy in rat neonatal ventricular myocytes was accompanied by the selective upregulation of RGS2 mRNA, with little or no change in RGS1, RGS3, RGS4 or RGS5. The adenylyl cyclase activator forskolin had a similar effect suggesting that it was mediated through cAMP production. To study the role of RGS2 upregulation in β-AR-dependent hypertrophy, cardiomyocytes were infected with adenovirus encoding RGS2 and assayed for cell growth, markers of hypertrophy, and β-AR signalling. ISO-induced increases in cell surface area were virtually eliminated by the overexpression of RGS2, as were increases in α-skeletal actin and atrial natriuretic peptide. RGS2 overexpression also significantly attenuated ISO-induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and Akt activation, which may account for, or contribute to, its observed antihypertrophic effects. In contrast, RGS2 overexpression significantly activated JNK MAP kinase, while decreasing the potency but not the maximal effect of ISO on cAMP accumulation. In conclusion, the present results suggest that RGS2 negatively regulates hypertrophy induced by β-AR activation and thus may play a protective role in cardiac hypertrophy.  相似文献   

5.
The goal was to assess whether salmeterol, a potent and long-acting beta-2-adrenergic agonist used in the treatment of asthma, also has non-beta-2-adrenergic effects on the stimulation or inhibition of adenylyl cyclase activity. Salmeterol (100 nM) maximally stimulated cAMP accumulation in enzyme dispersed bovine trachealis cells and this was entirely inhibited by propranolol, as expected for beta-adrenergic stimulation. However, the same concentration of salmeterol also antagonized carbachol inhibition of cAMP accumulation and altered binding of carbachol to muscarinic receptors. These effects of salmeterol were sensitive to washing of the cells and this was not consistent with a beta-2-adrenergic mechanism. The findings suggested that the maximal, beta-2-adrenergic stimulation of cAMP accumulation by salmeterol was accompanied by a non-beta-2-adrenergic interaction of salmeterol with muscarinic receptors that attenuated muscarinic inhibition of adenylyl cyclase.  相似文献   

6.
Since many isoforms of adenylyl cyclase and adenosine 3', 5'-monophosphate (cAMP) phosphodiesterase have been cloned, it is likely that receptors of each hormone have a specific combination of these isoforms. Types I, III and VIII adenylyl cyclases are reported to be stimulated by Ca(2+)-calmodulin, type I phosphodiesterase by Ca(2+)-calmodulin, but types IV and VII (cAMP-specific) phosphodiesterases by Co2+. In the present study, we examined different effects of Ca2+ and Co2+ on hormone-induced cAMP response in the isolated perfused rat liver.The removal of Ca2+ from the perfusion medium (0 mM CaCl(2 ) + 0.5 mM EGTA) did not affect glucagon (0.1 nM)-responsive cAMP but reduced secretin (1 nM)-, vasoactive intestinal polypeptide (VIP, 1-10 nM)- and forskolin (1 microM)-responsive cAMP considerably. The addition of 1 mM CoCl2 reduced glucagon- and secretin-responsive cAMP considerably, forskolin-responsive cAMP partly, did not affect 1 nM VIP-responsive cAMP, but enhanced 10 nM VIP-responsive cAMP. Forskolin- and VIP-responsive cAMP was greater in the combination (0 mM CaCl(2) + 0.5 mM EGTA + 3 mM CoCl2) than in the Ca(2+)-free perfusion alone.These results suggest that secretin, VIP1 and VIP2 receptors are linked to Ca(2+)-calmodulin-sensitive adenylyl cyclase; glucagon receptor to Ca(2+)-calmodulin-insensitive adenylyl cyclase; VIP1 receptor to Ca(2+)-calmodulin-dependent phosphodiesterase; glucagon, secretin and VIP2 receptors to cAMP-specific phosphodiesterase, respectively, in the rat liver.  相似文献   

7.
Granulocyte colony-stimulating factor (G-CSF) was reported to induce myocardial regeneration by promoting mobilization of bone marrow stem cells to the injured heart after myocardial infarction, but the precise mechanisms of the beneficial effects of G-CSF are not fully understood. Here we show that G-CSF acts directly on cardiomyocytes and promotes their survival after myocardial infarction. G-CSF receptor was expressed on cardiomyocytes and G-CSF activated the Jak/Stat pathway in cardiomyocytes. The G-CSF treatment did not affect initial infarct size at 3 d but improved cardiac function as early as 1 week after myocardial infarction. Moreover, the beneficial effects of G-CSF on cardiac function were reduced by delayed start of the treatment. G-CSF induced antiapoptotic proteins and inhibited apoptotic death of cardiomyocytes in the infarcted hearts. G-CSF also reduced apoptosis of endothelial cells and increased vascularization in the infarcted hearts, further protecting against ischemic injury. All these effects of G-CSF on infarcted hearts were abolished by overexpression of a dominant-negative mutant Stat3 protein in cardiomyocytes. These results suggest that G-CSF promotes survival of cardiac myocytes and prevents left ventricular remodeling after myocardial infarction through the functional communication between cardiomyocytes and noncardiomyocytes.  相似文献   

8.
In isolated perfused rat hearts, epidermal growth factor (EGF; 15 nM) increased cellular cyclic AMP (cAMP) content by 9.5-fold. In rat cardiac membranes, EGF also stimulated adenylate cyclase activity in a dose-dependent manner, with maximal stimulation (35% above control) being observed at 10 nM-EGF. Half-maximal stimulation of adenylate cyclase was observed at 40 pM-EGF. Although the beta-adrenergic-receptor antagonist propranolol markedly attenuated the isoprenaline-mediated increase in cAMP content of perfused hearts and stimulation of adenylate cyclase activity, it did not alter the ability of EGF to elevate tissue cAMP content and stimulate adenylate cyclase. The involvement of a guanine-nucleotide-binding protein (G-protein) in the activation of adenylate cyclase by EGF was indicated by the following evidence. First, the EGF-mediated stimulation of adenylate cyclase required the presence of the non-hydrolysable GTP analogue, guanyl-5'-yl-imidodiphosphate (p[NH]ppG). Maximal stimulation was observed in the presence of 10 microM-p[NH]ppG. Secondly, in the presence of 10 microM-p[NH]ppG, the stable GDP analogue guanosine 5'-[beta-thio]diphosphate at a concentration of 10 microM blocked the stimulation of the adenylate cyclase by 1 nM- and 10 nM-EGF. Third, NaF + AlCl3-stimulated adenylate cyclase activity was not altered by EGF. The ability of EGF to stimulate adenylate cyclase was not affected by pertussis-toxin treatment of cardiac membranes. However, in cholera-toxin-treated cardiac membranes, when the adenylate cyclase activity was stimulated by 2-fold, EGF was ineffective. Finally, PMA by itself did not alter the activity of cardiac adenylate cyclase, but abolished the EGF-mediated stimulation of this enzyme activity. The experimental evidence in the present paper demonstrates, for the first time, that EGF stimulates adenylate cyclase in rat cardiac membranes through a stimulatory GTP-binding regulatory protein, and this effect is manifested in elevated cellular cAMP levels in perfused hearts exposed to EGF.  相似文献   

9.
The modulation of beta-adrenoceptor signaling in the hearts of hindlimb unweighting (HU) simulated weightlessness rats has not been reported. In the present study, we adopted the rat tail suspension for 4 wk to simulate weightlessness; then the effects of simulated microgravity on beta-adrenoceptor signaling were studied. Mean arterial blood pressure (ABP), left ventricular pressure (LVP), systolic function (+dP/dtmax), and diastolic function (-dP/dtmax) were monitored in the course of the in vivo experiment. Single rat ventricular myocyte was obtained by the enzymatic dissociation method. Hemodynamics, myocyte contraction, and cAMP production in response to beta-adrenoceptor stimulation with isoproterenol or adenylyl cyclase stimulation with forskolin were measured, and Gs protein was also determined. Compared with the control group, no significant changes were found in heart weight, body weight and ABP, while LVP and +/-dP/dtmax were significantly reduced. The ABP decrease, LVP increase, and +/-dP/dtmax in response to isoproterenol administration were significantly attenuated in the HU group. The effects of isoproterenol on electrically induced single-cell contraction and cAMP production in myocytes of ventricles in the HU rats were significantly attenuated. The biologically active isoform, Gsalpha (45 kDa) in the heart, was unchanged. Both the increased electrically induced contraction and cAMP production in response to forskolin were also significantly attenuated in the simulated weightlessness rats. Above results indicated that impaired function of adenylyl cyclase causes beta-adrenoceptor desensitization, which may be partly responsible for the depression of cardiac function.  相似文献   

10.
The hormone-sensitive adenylyl cyclase system is under dual control, receiving both stimulatory and inhibitory inputs. Guanine nucleotide-binding regulatory proteins (G-proteins) transduce signals from cell surface receptors to effectors such as adenylyl cyclase. Hormonal stimulation is propagated via Gs, inhibition by Gi. Persistent (24-h) activation of the stimulatory pathway of adenylyl cyclase by the diterpene forskolin or the beta-adrenergic agonist isoproterenol in S49 mouse lymphoma cells enhanced the effects of somatostatin mediated via the inhibitory pathway of adenylyl cyclase. Stimulating cells with forskolin or isoproterenol for 24 h resulted in a 3-fold increase in the steady-state levels of Gi alpha 2 and a 25% decline in Gs alpha, as quantified by immunoblotting. Within 12 h of stimulation of adenylyl cyclase, Gi alpha 2 mRNA levels increased 4-fold, measured by DNA-excess solution hybridization. Gs alpha mRNA levels, in contrast, increased initially (25%), but then declined to 75% of control. In S49 variants that lack functional protein kinase A (kin-), stimulation by isoproterenol failed to alter Gi alpha 2 expression at either the protein or the mRNA levels. A 3-fold increase in relative synthesis rate and no change in the half-life (approximately 80 h) of Gi alpha 2 was observed in response to forskolin stimulation. Although Gs alpha synthesis increased (70%) modestly in response to forskolin stimulation, the half-life of Gs alpha actually decreased from 55 h in naive cells to 34 h in treated cells. Thus, the two G-protein-mediated pathways controlling adenylyl cyclase display "cross-regulation." Persistent activation of the stimulatory pathway increases Gi alpha 2 mRNA and expression. Transiently elevated Gs alpha mRNA levels are counterbalanced by a reduction in the half-life of the protein.  相似文献   

11.
Both endothelin (ET) and adrenomedullin (AM), produced by cardiac myocytes, are thought to be locally-acting hormones in the heart. Recently, calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) have been shown to function together to serve as AM receptors stimulating cAMP production. In the present study, we examined the effects of ET on AM secretion, intracellular cAMP response to AM, and gene expressions of CRLR and RAMPs in cultured cardiac myocytes. Synthetic ET-1 dose-dependently increased AM secretion from the cardiomyocytes. AM increased the intracellular cAMP level in a dose-dependent manner and the cAMP accumulation by AM was significantly amplified by 24 h preincubation with ET-1. 10 nmol/L ET-1 significantly increased the CRLR mRNA level without any effect on RAMP1 mRNA. 1 micromol/L ET-1 significantly reduced the RAMP2 mRNA level, but ET-1 dose-dependently increased the RAMP3 mRNA level in the cardiac myocytes. These findings suggest that ET-1 not only stimulates AM secretion, but also modulates intracellular cAMP responses to AM probably by altering the expressions of CRLR and RAMPs in rat cardiomyocytes.  相似文献   

12.
Glucagon is considered to exert cardiostimulant effects, most notably the enhancement of heart rate and contractility, due to the stimulation of glucagon receptors associated with Gs protein stimulation which causes adenylyl cyclase activation and the consequent increase in 3′,5′-cyclic adenosine monophosphate production in the myocardium. These effects have been extensively demonstrated in experimental studies in different animal species. However, efforts to extrapolate the experimental data to patients with low cardiac output states, such as acute heart failure or cardiogenic shock, have been disappointing. The experimental and clinical data on the cardiac effects of glucagon are described here.  相似文献   

13.
Thyroid hormone-induced cardiac hypertrophy is similar to that observed in physiological hypertrophy, which is associated with high cardiac contractility and increased alpha-myosin heavy chain (alpha-MHC, the high ATPase activity isoform) expression. In contrast, angiotensin II (Ang II) induces an increase in myocardial mass with a compromised contractility accompanied by a shift from alpha-MHC to the fetal isoform beta-MHC (the low ATPase activity isoform), which is considered as a pathological hypertrophy and inevitably leads to the development of heart failure. The present study is designed to assess the effect of thyroid hormone on angiotensin II-induced hypertrophic growth of cardiomyocytes in vitro. Cardiomyocytes were prepared from hearts of neonatal Wistar rats. The effects of Ang II and 3,3',5-triiodo-thyronine (T3) on incorporations of [3H]-thymine and [3H]-leucine, MHC isoform mRNA expression, PKC activity, and PKC isoform protein expression were studied. Ang II enhanced [3H]-leucine incorporation, beta-MHC mRNA expression, PKC activity, and PKCepsilon expression and inhibited alpha-MHC mRNA expression in cardiomyocytes. T3 treatment prevented Ang II-induced increases in PKC activity, PKCepsilon, and beta-MHC mRNA overexpression and favored alpha-MHC mRNA expression. Thyroid hormone appears to be able to reprogram gene expression in Ang II-induced cardiac hypertrophy, and a PKC signal pathway may be involved in such remodeling process.  相似文献   

14.
15.
It is well established that G protein-coupled receptors stimulate nitric oxide-sensitive soluble guanylyl cyclase by increasing intracellular Ca(2+) and activating Ca(2+)-dependent nitric-oxide synthases. In pituitary cells receptors that stimulated adenylyl cyclase, growth hormone-releasing hormone, corticotropin-releasing factor, and thyrotropin-releasing hormone also stimulated calcium signaling and increased cGMP levels, whereas receptors that inhibited adenylyl cyclase, endothelin-A, and dopamine-2 also inhibited spontaneous calcium transients and decreased cGMP levels. However, receptor-controlled up- and down-regulation of cyclic nucleotide accumulation was not blocked by abolition of Ca(2+) signaling, suggesting that cAMP production affects cGMP accumulation. Agonist-induced cGMP accumulation was observed in cells incubated in the presence of various phosphodiesterase and soluble guanylyl cyclase inhibitors, confirming that G(s)-coupled receptors stimulated de novo cGMP production. Furthermore, cholera toxin (an activator of G(s)), forskolin (an activator of adenylyl cyclase), and 8-Br-cAMP (a permeable cAMP analog) mimicked the stimulatory action of G(s)-coupled receptors on cGMP production. Basal, agonist-, cholera toxin-, and forskolin-stimulated cGMP production, but not cAMP production, was significantly reduced in cells treated with H89, a protein kinase A inhibitor. These results indicate that coupling seven plasma membrane-domain receptors to an adenylyl cyclase signaling pathway provides an additional calcium-independent and cAMP-dependent mechanism for modulating soluble guanylyl cyclase activity in pituitary cells.  相似文献   

16.
It is now well known that the signal transduction pathway involving beta-adrenoceptors and adenylyl cyclase is altered in ischemic heart disease. Since leukocytes accumulate in the ischemic heart and produce hypochlorous acid (HOCl), we investigated the effects of HOCl upon beta-adrenoceptors and adenylyl cyclase activities by perfusing rat hearts with 0.1 mM HOCl for 10 min and isolating cardiac membranes. Marked depressions in both the density and affinity of beta1-adrenoceptors were observed, whereas no significant change in the affinity or density of beta2-adrenoceptors was seen in hearts perfused with HOCl. After treatment of hearts with HOCl, competition curves using isoproterenol, a beta-adrenoceptor agonist, revealed a decrease in the proportion of high affinity binding sites. The adenylyl cyclase activities in the absence and presence of forskolin, NaF, Gpp(NH)p, or isoproterenol were depressed in hearts perfused with HOCl; however, the stimulatory effects of these agents on adenylyl cyclase were either unaltered or augmented. The presence of methionine in the perfusion medium prevented the HOCl-induced changes in beta1-adrenoceptors and adenylyl cyclase activity. These results suggest that HOCl may produce a defect in the beta-adrenoceptor linked signal transduction mechanism by affecting both beta1-adrenoceptors and adenylyl cyclase enzyme in the myocardium.  相似文献   

17.
Opioid tolerance and physical dependence in mammals can be rapidly induced by chronic exposure to opioid agonists. Recently, opioid receptors have been shown to interact with the pertussis toxin (PTX)-insensitive Gz (a member of the Gi subfamily), which inhibits adenylyl cyclase and stimulates mitogen-activated protein kinases (MAPKs). Here, we established stable human embryonic kidney 293 cell lines expressing delta-opioid receptors with or without Gz to examine the role of Gz in opioid receptor-regulated signaling systems. Each cell line was acutely or chronically treated with [D-Pen2,D-Pen5]enkephalin (DPDPE), a delta-selective agonist, in the absence or presence of PTX. Subsequently, the activities of adenylyl cyclase, cyclic AMP (cAMP)-dependent response element-binding proteins (CREBs), and MAPKs were measured by determining cAMP accumulation and phosphorylation of CREBs and the extracellular signal-regulated protein kinases (ERKs) 1 and 2. In cells coexpressing Gz, DPDPE inhibited forskolin-stimulated cAMP accumulation in a PTX-insensitive manner, but Gz could not replace Gi to mediate adenylyl cyclase supersensitization upon chronic opioid treatment. DPDPE-induced adenylyl cyclase supersensitization was not associated with an increase in the phosphorylation of CREBs. Both Gi and Gz mediated DPDPE-induced activation of ERK1/2, but these responses were abolished by chronic opioid treatment. Collectively, our results show that although Gz mediated opioid-induced inhibition of adenylyl cyclase and activation of ERK1/2, Gz alone was insufficient to mediate opioid-induced adenylyl cyclase supersensitization.  相似文献   

18.
The modulation of L-type calcium current (ICa,L) is mainly due to mediators acting through activation of G protein-coupled receptors (GPCR) and different protein kinases; among them, phosphoinositide 3-kinasegamma (PI3Kgamma) has been recently discovered to play an important role in the regulation of cardiac contractility and beta-adrenergic signal transduction. Recent reports have demonstrated that, in the heart, different subtypes of beta-adrenergic receptors are coupled to both Gi and/or Gs proteins. While beta1-adrenergic receptors (beta1-AR) couple only to Gs and evoke a strong ICa,L, beta2-adrenergic receptors (beta2-AR) can activate both Gs and Gi proteins and trigger only a limited ICa,L. Here we demonstrate that (i) PI3Kgamma-/- ventricular myocytes are characterized by an higher basal ICa,L density, even if the responsiveness of adenylyl cyclase to Forskolin is comparable to that observed in PI3Kgamma+/+ cardiomyocytes; (ii) both in basal conditions and after beta-AR stimulation, the activity of phosphodiesterase (PDE) type 3 depends on PI3Kgamma; (iii) in PI3Kgamma-/- cardiac myocytes, specific stimulation of beta2-AR is followed by a increase in ICa,L stronger than in wild-type controls. Taken together, our results suggest that the higher values of ICa,L observed both in basal conditions and after beta-AR stimulation in PI3Kgamma-/- ventricular myocytes are mainly due to a positive modulation of PDE3 activity exerted by PI3Kgamma. As observed in PI3Kgamma-/- neonatal cardiomyocytes, cells lacking PI3Kgamma are more sensitive to stimulation of beta2-adrenergic receptors.  相似文献   

19.
The cDNAs for types V and IX adenylyl cyclases were cloned from a chicken heart library and expressed in 293T cells (plasmid transfection) and in embryonic chick ventricular myocytes (adenovirus infection). Expression of type V or IX cyclases in 293T cells resulted in increases in basal and isoproterenol (ISO)-stimulated cAMP levels, whereas the expression of type V, but not type IX, cyclase increased forskolin (FK)-stimulated cAMP levels. Expression of type V cyclase in cardiac myocytes increased basal and FK-stimulated cAMP levels, variably increased ISO-stimulated cAMP levels, and decreased the content of beta-adrenergic receptors (betaARs). The expression of type IX cyclase in cardiac myocytes increased basal and ISO-elevated cAMP levels and, surprisingly, increased the cAMP-elevating effect of FK. The finding that FK responses are increased in cardiac myocytes but not in 293T cells expressing the type IX cyclase suggests that the host cell influences the properties of the type IX isozyme.  相似文献   

20.
Agonist-promoted down-regulation of beta-adrenergic receptor mRNA was investigated in S49 mouse lymphoma variants with mutations in elements of hormone-sensitive adenylate cyclase. In wild-type cells steady-state levels of beta-adrenergic receptor mRNA were established by DNA-excess solution hybridization to be 1.72 +/- 0.08 (n = 8) amol/microgram total cellular RNA. Receptor mRNA levels declined 35-45% in response to stimulation by the beta-adrenergic agonist (-)isoproterenol or forskolin as described previously in DDT1 MF-2 cells (Hadcock, J. R., and Malbon, C. C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5021-5025). Agonist-promoted cAMP accumulation and down-regulation of receptor mRNA were analyzed in three variants with mutations in Gs alpha (H21a, unc, cyc-) and a single variant lacking cAMP-dependent protein kinase activity (kin-). H21a (Gs alpha coupled to receptor, but not to adenylate cyclase), unc (Gs alpha uncoupled from receptor), and cyc- (lacking Gs alpha) variants accumulated cAMP and down-regulated beta AR mRNA in response to forskolin. In unc and cyc- cells isoproterenol failed to stimulate cAMP; accumulation and down-regulation of receptor mRNA was not observed. H21a cells, in contrast, displayed agonist-promoted regulation of beta-adrenergic receptor mRNA but only basal levels of cAMP accumulation in response to isoproterenol. The kin- cells displayed cAMP accumulation in response to forskolin as well as to isoproterenol but no down-regulation of receptor mRNA or receptor expression. Taken together these data demonstrate several features of agonist-promoted down-regulation of mRNA: (i) cAMP-dependent protein kinase activity is required for down-regulation of mRNA (kin-), although elevated cAMP accumulation is not (H21a); (ii) functional receptor-Gs coupling is required (H21a), and clones lacking Gs alpha (cyc-) or receptor Gs coupling (unc) lack the capacity to down-regulate mRNA in response to agonist; and (iii) in the presence of basal levels of cAMP and cAMP-dependent protein kinase activity, functional receptor-Gs coupling (H21a) to some other effector other than adenylate cyclase may be propagating the signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号