首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly aggressive pediatric malignant rhabdoid tumors (MRT) arise in the kidney and central nervous system (CNS) with no curative treatment available. Multiple studies have shown that inactivation of the SNF5 tumor suppressor gene occurs in virtually all MRTs. However, few studies have addressed whether additional genetic events may contribute to MRT development. In this report, we demonstrate that phosphorylated Akt (P-Akt) is expressed in a subpopulation of cells in at least 10% of primary rhabdoid tumors as well as at high levels in three MRT cell lines. Similar to other high P-Akt expressing tumor cell lines, MRTs have decreased sensitivity to p21 induced growth arrest. Therefore, P-Akt expression may distinguish between two types of MRTs. Because drugs directed against the PI3-K/Akt have shown promise in clinical trials for other tumor types, they may prove useful for treatment of patients with P-Akt positive MRTs. P-Akt expression also provides a potential mechanistic link between these pediatric tumors and adult malignancies.  相似文献   

2.
We demonstrated that enhancement of X-ray-induced apoptosis/rapid cell death by wortmannin accompanied by increased activation of JNK/SAPK in human leukemia MOLT-4 cells. Rapid cell death/apoptosis was determined either by the dye exclusion test or by the appearance of Annexin V-positive cells and cleaved PARP fragments. Enhancement was observed only at higher concentrations of wortmannin, i.e. 1 microM or more. At these high concentrations, both DNA-PK and ATM were inhibited. X-ray-induced phosphorylation of Ser 15 of p53/TP53, accumulation of both p53/TP53 and p21/WAF1/CDKN1A, and phosphorylation of XRCC4 were all suppressed. The enhancement of apoptosis/rapid cell death by wortmannin was prevented by addition of caspase inhibitors, Z-VAD-FMK or Ac-DEVD-CHO, or by transfection and overexpression of mouse Bcl2, which is known as an anti-apoptosis protein. The requirement for a high concentration of wortmannin, i.e. 1 microM or more, indicates that inhibition of both DNA-PK and ATM was necessary for the enhanced apoptosis/rapid cell death. Phosphorylation of AKT/PKB was completely suppressed at a much lower concentration, i.e. 0.1 microM wortmannin, where no enhancement of X-ray-induced apoptosis/rapid cell death was observed. On the other hand, X-ray-induced phosphorylation of JNK and its kinase activity as well as apoptosis/rapid cell death were all significantly enhanced only at high concentrations of wortmannin, i.e. 1 microM or more. Furthermore, the extent of enhancement of both JNK phosphorylation and of apoptosis/rapid cell death by wortmannin was less in Rh1a cells, which are ceramide- and radiation-resistant variant cells compared to the parental MOLT-4 cells. Therefore, activation of the JNK pathway was considered important for the enhancement of X-ray-induced apoptosis/rapid cell death of MOLT-4 cells by wortmannin, because of the requirement for a higher concentration of wortmannin than that required for inhibition of AKT phosphorylation. The suppression of the AKT-dependent pathway by wortmannin may have some underlying role in activating the JNK pathway toward the enhancement of cell death in the current system.  相似文献   

3.
Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G(2)/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp53 bearing cancer cells.  相似文献   

4.
5.
p53 is activated by stress leading to oncogenic alteration, which induces either cell cycle arrest or apoptosis, although the mechanism involved in this decision has not been fully clarified as yet. This work was undertaken to change the cellular response by inducing apoptosis with PI3K inhibitors to Saos-2 cells that had been growth-arrested in both G1 and G2/M by the wild-type activity of temperature-sensitive (ts) p53. We found that the PI3K/Akt inhibitors LY294002 and wortmannin, but not the MEK inhibitor U0126, were capable of inducing apoptosis in growth-arrested Saos-2 cells, as assessed by an increase in the sub-G1 population, pyknotic nuclei, and DNA ladder formation. We detected the cleavage of caspases 9 and 3, and PARP after LY294002 addition, accompanied by a loss of cytochrome c from the mitochondria, and observed Bax translocation to the mitochondria and down-regulation of phospho-Akt, suggesting that blocking of survival signals triggered the apoptotic signal through the mitochondrial apoptotic pathway. It is thus suggested that the PI3K/Akt pathway played an important role in determining cell fate between growth arrest and apoptosis.  相似文献   

6.
The effect of poly(ADP-ribosyl)ation on the stability of p53 in SK-HEP1 cells treated with UV light was examined. Intracellular levels of p53 increased in cells treated with a low dose of UV light (20 J/m2), whereas they increased but then declined after a higher dose of UV (100 J/m2). Intracellular levels of p53 in the UV treated SK-HEP1 cells were dependent on the UV dose. Use of proteasome inhibitors revealed that p53 is degraded by proteasomal proteolysis after high doses of UV light. We present evidence that, at low doses, poly(ADP-ribose)polymerase (PARP) poly(ADP-ribosyl)ates p53 and protects it from proteasomal degradation before caspase-3 is activated, whereas at high doses the cells undergo UV induced apoptosis and PARP is cleaved by caspase-3 before it can protect p53 from degradation. Destabilization of p53 by cleavage of PARP may be important in cell fate decision favoring apoptosis.  相似文献   

7.
Phosphatidylinositol 3-kinase (PI3-K) signaling may inhibit apoptosis in neoplastic cells. The PI-3K inhibitor wortmannin renders cells apoptosis-prone. Inducers of differentiation may also cause apoptosis. To detect the effect of wortmannin on the survival of differentiated human acute promyeloid leukemia cells, HL-60 cells were induced to differentiation with treatment of all trans-retinoic acid (ATRA) followed by treatment with wortmannin. Results showed that apoptosis occurred in cells that underwent differentiation, but not in undifferentiated HL-60 cells. The pro-apoptotic molecule, Bad, played a role in this apoptotic mechanism. Thus, the survival of differentiated HL-60 cells induced by ATRA depends on the ability of the PI3-K pathway to transduce survival signals; the PI3-K inhibitor, wortmannin, can induce apoptosis of differentiated HL-60 cells. These results may indicate a novel method for treating cancer with differentiation induction and signal pathway regulation.  相似文献   

8.
Phosphatidylinositol 3-kinase (PI3-K) signaling may inhibit apoptosis in neoplastic cells. The PI-3K inhibitor wortmannin renders cells apoptosis-prone. Inducers of differentiation may also cause apoptosis. To detect the effect of wortmannin on the survival of differentiated human acute promyeloid leukemia cells, HL-60 cells were induced to differentiation with treatment of all trans-retinoic acid (ATRA) followed by treatment with wortmannin. Results showed that apoptosis occurred in cells that underwent differentiation, but not in undifferentiated HL-60 cells. The pro-apoptotic molecule, Bad, played a role in this apoptotic mechanism. Thus, the survival of differentiated HL-60 cells induced by ATRA depends on the ability of the PI3-K pathway to transduce survival signals; the PI3-K inhibitor, wortmannin, can induce apoptosis of differentiated HL-60 cells. These results may indicate a novel method for treating cancer with differentiation induction and signal pathway regulation.  相似文献   

9.
The radiosensitizing effect of wortmannin (WM) treatment during and after irradiation was studied in radioresistant bladder tumor cell lines with normal (MGH-U1 cells) or defective p53 activity (RT112 cells). WM modulated G2/M cell cycle arrest induced by higher X-ray doses (10 Gy) in both cell lines, although the alteration was significant only in RT112 cells. The observation suggests that WM activity is independent of p53. Constitutive expression of DNA-PKcs was found to be higher in RT112 cells than in MGH-U1. Treatment with WM enhanced radiation-induced apoptosis significantly in RT112 cells while it had no effect on MGH-U1 cells. Although a variety of PI3-kinases and PI3-K like kinases (including ATM) could be inhibited by WM, our observation of increased early lethality by WM treatment in RT112 is in agreement with previous results. They suggest that the WM-dependent radiosensitization of RT112 is a direct consequence of the inhibition of DNA-PK, resulting in the inhibition of DSB repair in the fast component. This early effect in the p53 deficient cell line could also indicate that processes other than apoptosis may contribute to the increased radiosensitization. In our opinion, the expression level of DNA-PKcs in human tumor cells may be a good predictor for the success of DNA-PKcs inhibitors when used as radiosensitizers.  相似文献   

10.
Poly(ADP-ribose) polymerase (PARP) is a DNA binding zinc finger protein that catalyzes the transfer of ADP-ribose residues from NAD(+) to itself and different chromatin constituents, forming branched ADP-ribose polymers. The enzymatic activity of PARP is induced upon DNA damage and the PARP protein is cleaved during apoptosis, which suggested a role of PARP in DNA repair and DNA damage-induced cell death. We have generated transgenic mice that lack PARP activity in thymocytes owing to the targeted expression of a dominant negative form of PARP. In the presence of single-strand DNA breaks, the absence of PARP activity correlated with a strongly increased rate of apoptosis compared to cells with intact PARP activity. We found that blockage of PARP activity leads to a drastic increase of p53 expression and activity after DNA damage and correlates with an accelerated onset of Bax expression. DNA repair is almost completely blocked in PARP-deficient thymocytes regardless of p53 status. We found the same increased susceptibility to apoptosis in PARP null mice, a similar inhibition of DNA repair kinetics, and the same upregulation of p53 in response to DNA damage. Thus, based on two different experimental in vivo models, we identify a direct, p53-independent, functional connection between poly(ADP-ribosyl)ation and the DNA excision repair machinery. Furthermore, we propose a p53-dependent link between PARP activity and DNA damage-induced cell death.  相似文献   

11.
There are several pathways leading to apoptosis. It is not clear whether cells choose one of them or use multiple processes when they commit to apoptosis. MOLT-4 cells undergo apoptosis after X-irradiation through the p53-dependent pathway and/or ceramide signal. To evaluate the relative contribution of these pathways, we studied effects of the expression of various levels of transfected murine mutant p53 cDNA (TGC-->CGC of codon 173, corresponding to codonl76 in human p53) on the induction of apoptosis in X-irradiated or heated MOLT-4 cells. When survival was determined by the dye-exclusion test at 24 h after irradiation, the percentage of X-ray- or heat-induced dead cells was markedly decreased, depending on the expression level of mutant p53 protein in transfected clones. The appearance of apoptotic cells as determined by morphological changes was also decreased. These inhibitions were almost complete at 24 h after irradiation with X-rays in the case of the highest-expressing clone. p21 WAF1 protein was increased in MOLT-4 cells after X-irradiation, but not in the transfectant. These results suggest that murine mutant p53 protein has a dominant-negative effect against normal p53 in MOLT-4, and that the X-ray-induced apoptosis in MOLT-4 is fully p53-dependent.  相似文献   

12.
Paclitaxel (PTX) and beta‐lapachone (LPC) are naturally occurring compounds that have shown a large spectrum of anticancer activity. In this article we show for the first time that PTX/LPC combination induces potent synergistic apoptotic effects in human retinoblastoma Y79 cells. Combination of suboptimal doses of PTX (0.3 nM) and LPC (1.5 µM) caused biochemical and morphological signs of apoptosis at 48 h of treatment. These effects were accompanied by potent lowering in inhibitor of apoptosis proteins and by activation of Bid and caspases 3 and 6 with lamin B and PARP breakdown. PTX/LPC combination acted by favoring p53 stabilization through a lowering in p‐Akt levels and in ps166‐MDM2, the phosphorylated‐MDM2 form that enters the nucleus and induces p53 export and degradation. Treatment with wortmannin or transfection with a dominant negative form of Akt anticipated at 24 h the effects induced by PTX/LPC, suggesting a protective role against apoptosis played by Akt in Y79 cells. In line with these results, we demonstrated that Y79 cells contain constitutively active Akt, which forms a cytosolic complex with p53 and MDM2 driving p53 degradation. PTX/LPC treatment induced a weakness of Akt–MDM2–p53 complex and increased nuclear p53 levels. Our results suggest that phospho‐Akt lowering is at the root of the apoptotic action exerted by PTX/LPC combination and provide strong validation for a treatment approach that targets survival signals represented by phospho‐Akt and inhibitor of apoptosis proteins. J. Cell. Physiol. 222: 433–443, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
14.
The present study examined whether X-ray- and CDDP-sensitivities depend on p53 gene status in human squamous cell carcinoma of the head and neck (SAS cells) showing dominant negative nature of mutant p53 protein. SAS cells were transfected with a vector carrying a mutant p53 gene (SAS/Trp248 cells) or neomycin resistant gene control vector (SAS/neo cells). Sensitivities of the transfected cells to X-ray or CDDP were measured with colony formation assay. The incidence of apoptosis by X-ray or CDDP was analyzed with Hoechst staining or DNA ladder formation assay. The activation of caspase-3 was estimated as an indicator of apoptosis by the detection of fragmentation of caspase-3 or poly (ADP ribose) polymerase (PARP) with Western blot. SAS/Trp248 cells showed X-ray- and CDDP-resistance due to the dominant negative nature of mutant p53, compared with SAS/neo cells. The incidence of DNA ladders and apoptotic bodies increased markedly in SAS/neo cells after X-ray irradiation or CDDP treatment, but increased only slightly in SAS/Trp248 cells. Fragmentation of caspase-3 and PARP was observed in SAS/neo cells, but almost no such fragmentation was observed in SAS/Trp248 cells after X-ray irradiation or CDDP treatment. The present results strongly suggest that the X-ray- and CDDP-sensitivities of human squamous cell carcinomas are p53-dependent, and that the sensitivities are tightly correlated with the induction of apoptosis through caspase-3 activation. The p53-dependent X-ray- or CDDP-sensitivity was supported by results from p53-null human lung cancer H1299 cells which were transfected with wild-type or mutant p53 gene.  相似文献   

15.
Wild-type p53 triggers two distinct biological responses, cell cycle arrest and apoptosis. Several small DNA tumor viruses encode proteins that bind p53 and thus block the function of p53. This probably reflects the need of these viruses to prevent p53-induced cell cycle arrest and apoptosis to allow viral DNA replication. Unlike SV40 large T, polyoma virus large T does not bind p53, and it is still unclear how polyoma virus blocks p53 function. To address this question, we transfected polyoma virus middle T or small t alone or middle T and small t together into J3D mouse T-lymphoma cells carrying temperature-sensitive p53 (ts p53). Induction of wild-type p53 by temperature shift to 32 degrees C triggered both G1 cell cycle arrest and apoptosis in parental J3D-ts p53 cells. In contrast, J3D-ts p53 cells coexpressing middle T and small t showed only a weak G1 cell cycle arrest response after induction of wild-type p53 at 32 degrees C. Fluorescence-activated cell sorter analysis revealed that nearly half of the middle T-expressing cells, 30% of the small t-expressing cells, and a majority of the cells coexpressing middle T and small t were resistant to p53-induced apoptosis. The phosphatidylinositol 3-kinase inhibitor wortmannin partially abrogated the protective effect of middle T but not small t on p53-induced apoptosis, indicating that middle T prevents p53-induced apoptosis through the phosphatidylinositol 3-kinase signal transduction pathway. Our results thus establish a mechanism for polyoma virus-mediated inhibition of p53 function.  相似文献   

16.
In an attempt to determine whether exposure to extremely low frequency (ELF) electromagnetic fields can affect cells, Ku80-deficient cells (xrs5) and Ku80-proficient cells (CHO-K1) were exposed to ELF electromagnetic fields. Cell survival, and the levels of the apoptosis-related genes p21, p53, phospho-p53 (Ser(15)), caspase-3 and the anti-apoptosis gene bcl-2 were determined in xrs5 and CHO-K1 cells following exposure to ELF electromagnetic fields and X-rays. It was found that exposure of xrs5 and CHO-K1 cells to 60 Hz ELF electromagnetic fields had no effect on cell survival, cell cycle distribution and protein expression. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields for 5 h after irradiation significantly inhibited G(1) cell cycle arrest induced by X-rays (1 Gy) and resulted in elevated bcl-2 expression. A significant decrease in the induction of p53, phospho-p53, caspase-3 and p21 proteins was observed in xrs5 cells when irradiation by X-rays (8 Gy) was followed by exposure to 5 mT ELF magnetic fields. Exposure of xrs5 cells to the ELF electromagnetic fields for 10 h following irradiation significantly decreased X-ray-induced apoptosis from about 1.7% to 0.7%. However, this effect was not found in CHO-K1 cells within 24 h of irradiation by X-rays alone and by X-rays combined with ELF electromagnetic fields. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields following irradiation can affect cell cycle distribution and transiently suppress apoptosis by decreasing the levels of caspase-3, p21, p53 and phospho-p53 and by increasing bcl-2 expression.  相似文献   

17.
Targeting DNA repair with poly(ADP-ribose) polymerase (PARP) inhibitors has shown a broad range of anti-tumor activity in patients with advanced malignancies with and without BRCA deficiency. It remains unclear what role p53 plays in response to PARP inhibition in BRCA-proficient cancer cells treated with DNA damaging agents. Using gene expression microarray analysis, we find that DNA damage response (DDR) pathways elicited by veliparib (ABT-888), a PARP inhibitor, plus topotecan comprise the G1/S checkpoint, ATM, and p53 signaling pathways in p53-wildtype cancer cell lines and BRCA1, BRCA2 and ATR pathway in p53-mutant lines. In contrast, topotecan alone induces the G1/S checkpoint pathway in p53-wildtype lines and not in p53-mutant cells. These responses are coupled with G2/G1 checkpoint effectors p21CDKN1A upregulation, and Chk1 and Chk2 activation. The drug combination enhances G2 cell cycle arrest, apoptosis and a marked increase in cell death relative to topotecan alone in p53-wildtype and p53-mutant or -null cells. We also show that the checkpoint kinase inhibitor UCN-01 abolishes the G2 arrest induced by the veliparib and topotecan combination and further increases cell death in both p53-wildtype and -mutant cells. Collectively, PARP inhibition by veliparib enhances DDR and cell death in BRCA-proficient cancer cells in a p53-dependent and -independent fashion. Abrogating the cell-cycle arrest induced by PARP inhibition plus chemotherapeutics may be a strategy in the treatment of BRCA-proficient cancer.  相似文献   

18.
The molecular mechanism by which Profilin acts as a tumor suppressor is still unclear. Several chemotherapeutic agents, used till date either have unfavorable side effects or acquired resistance in tumor cells. Our findings show that Profilin enhances cell death mediated by several chemotherapeutic-agents. The activation of NF-κB and its dependent genes, mediated by paclitaxel and vinblastine, was completely inhibited in Profilin overexpressing cells. This inhibition was due to the Profilin mediated attenuation of IκBα degradation, thereby preventing p65 nuclear translocation and low NF-κB DNA binding activity.Moreover, Profilin increases level of p53 in the presence of known inducers, such as doxorubicin, vinblastine, and benzofuran. This increased p53 level leads to enhanced cell death as indicated by activation of caspases 3, 8, 9, which results in cleavage of PARP.Furthermore, knocking down of p53 in Profilin overexpressing cells leads to decreased cell death. Ectopic expression of Profilin in HCT116 p53 knock out cells showed lesser cell death as compared to the HCT116 p53 wild type cells. For the first time, we provide evidences, which suggest that Profilin synergizes with chemotherapeutic drugs to induce tumor cell death by regulating NF-κB and p53. Thus, modulation of Profilin may be a useful strategy for effective combination therapy.  相似文献   

19.
We have previously reported that in cells ectopically expressing temperature-sensitive p53(135val) mutant, p53 formed tight complexes with poly(ADP-ribose) polymerase (PARP). At elevated temperatures, p53(135val) protein, adopting the mutant phenotype, was localized in the cytoplasm and sequestered the endogenous PARP. To prove whether an excess of p53(135val) protein led to this unusual intracellular distribution of PARP, we have established cell lines overexpressing p53(135val) + c-Ha-ras alone or in combination with PARP. Interestingly, immunostaining revealed that PARP is sequestered in the cytoplasm by mutant p53 in cells overexpressing both proteins. Simultaneous overexpression of PARP had no effect on temperature-dependent cell proliferation and only negligibly affected the kinetics of p53-mediated G(1) arrest. However, if the cells were completely growth arrested at 32 degrees C and then shifted up to 37 degrees C, coexpressed PARP dramatically delayed the reentry of transformed cells into the cell cycle. Even after 72 h at 37 degrees C the proportion of S-phase cells was reduced to 20% compared to those expressing only p53(135val) + c-Ha-ras. The coexpressed PARP stabilized wt p53 protein and its enzymatic activity was necessary for stabilization.  相似文献   

20.
Malignant rhabdoid tumors (MRTs) are aggressive pediatric cancers arising in brain, kidney and soft tissues, which are characterized by loss of the tumor suppressor SNF5/SMARCB1. MRTs are poorly responsive to chemotherapy and thus a high unmet clinical need exists for novel therapies for MRT patients. SNF5 is a core subunit of the SWI/SNF chromatin remodeling complex which affects gene expression by nucleosome remodeling. Here, we report that loss of SNF5 function correlates with increased expression of fibroblast growth factor receptors (FGFRs) in MRT cell lines and primary tumors and that re-expression of SNF5 in MRT cells causes a marked repression of FGFR expression. Conversely, siRNA-mediated impairment of SWI/SNF function leads to elevated levels of FGFR2 in human fibroblasts. In vivo, treatment with NVP-BGJ398, a selective FGFR inhibitor, blocks progression of a murine MRT model. Hence, we identify FGFR signaling as an aberrantly activated oncogenic pathway in MRTs and propose pharmacological inhibition of FGFRs as a potential novel clinical therapy for MRTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号