首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ADP-ribose) polymerase 1 (PARP-1) catalyzes a post-translational modification that plays a crucial role in coordinating the signalling cascade in response to stress stimuli. During the DNA damage response, phosphorylation by ataxia telangiectasia mutated (ATM) kinase and checkpoint kinase Chk2 induces the stabilization of Che-1 protein, which is critical for the maintenance of G2/M arrest. In this study we showed that poly(ADP-ribosyl)ation, beyond phosphorylation, is involved in the regulation of Che-1 stabilization following DNA damage. We demonstrated that Che-1 accumulation upon doxorubicin treatment is reduced after the inhibition of PARP activity in HCT116 cells and in PARP-1 knock-out or silenced cells. In accordance, impairment in Che-1 accumulation by PARP inhibition reduced Che-1 occupancy at p21 promoter and affected the expression of the corresponding gene. Epistasis experiments showed that the effect of poly(ADP-ribosyl)ation on Che-1 stabilization is independent from ATM kinase activity. Indeed we demonstrated that Che-1 protein co-immunoprecipitates with ADP-ribose polymers and that PARP-1 directly interacts with Che-1, promoting its modification in vitro and in vivo.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Tumor suppression by the p53 protein largely depends on the elimination of damaged cells by apoptosis. Mutations in the polyproline region (PPR) of p53 impair its apoptotic function. Deletion of the PPR renders p53 more sensitive to inhibition by Mdm2 via an unknown mechanism. We have explored the mechanism by which the PPR modulates the p53/Mdm2 loop. Proline 82 of p53 was identified to be essential for its interaction with the checkpoint kinase 2 (Chk2) and consequent phosphorylation of p53 on serine 20, following DNA damage. These physical and functional interactions are regulated by Pin1 through cis-trans isomerization of proline 82. Our study unravels the pathway by which Pin1 activates p53 in response to DNA damage and explains how Pin1 protects p53 from Mdm2. Further, we propose a role for Pin1-dependent induction of p53 conformational change as a mechanism responsible for the enhanced interaction between p53 and Chk2 following DNA damage. Importantly, our findings elucidate the selection for mutations in the Pin1 target Thr81/Pro82 motif within the PPR of p53 in human cancer.  相似文献   

9.
10.
ATM mutations are responsible for the genetic disease ataxia-telangiectasia (A-T). ATM encodes a protein kinase that is activated by ionizing radiation-induced double strand DNA breaks. Cells derived from A-T patients show many abnormalities, including accelerated telomere loss and hypersensitivity to ionizing radiation; they enter into mitosis and apoptosis after DNA damage. Pin2 was originally identified as a protein involved in G(2)/M regulation and is almost identical to TRF1, a telomeric protein that negatively regulates telomere elongation. Pin2 and TRF1, probably encoded by the same gene, PIN2/TRF1, are regulated during the cell cycle. Furthermore, up-regulation of Pin2 or TRF1 induces mitotic entry and apoptosis, a phenotype similar to that of A-T cells after DNA damage. These results suggest that ATM may regulate the function of Pin2/TRF1, but their exact relationship remains unknown. Here we show that Pin2/TRF1 coimmunoprecipitated with ATM, and its phosphorylation was increased in an ATM-dependent manner by ionizing DNA damage. Furthermore, activated ATM directly phosphorylated Pin2/TRF1 preferentially on the conserved Ser(219)-Gln site in vitro and in vivo. The biological significance of this phosphorylation is substantiated by functional analyses of the phosphorylation site mutants. Although expression of Pin2 and its mutants has no detectable effect on telomere length in transient transfection, a Pin2 mutant refractory to ATM phosphorylation on Ser(219) potently induces mitotic entry and apoptosis and increases radiation hypersensitivity of A-T cells. In contrast, Pin2 mutants mimicking ATM phosphorylation on Ser(219) completely fail to induce apoptosis and also reduce radiation hypersensitivity of A-T cells. Interestingly, the phenotype of the phosphorylation-mimicking mutants is the same as that which resulted from inhibition of endogenous Pin2/TRF1 in A-T cells by its dominant-negative mutants. These results demonstrate for the first time that ATM interacts with and phosphorylates Pin2/TRF1 and suggest that Pin2/TRF1 may be involved in the cellular response to double strand DNA breaks.  相似文献   

11.
12.
Condensin I is important for chromosome organization and segregation in mitosis. We previously showed that condensin I also interacts with PARP1 in response to DNA damage and plays a role in single-strand break repair. However, whether condensin I physically associates with DNA damage sites and how PARP1 may contribute to this process were unclear. We found that condensin I is preferentially recruited to DNA damage sites enriched for base damage. This process is dictated by PARP1 through its interaction with the chromosome-targeting domain of the hCAP-D2 subunit of condensin I.  相似文献   

13.
Cells derived from patients with the human genetic disorder ataxia-telangiectasia (A-T) display many abnormalities, including telomere shortening, premature senescence, and defects in the activation of S phase and G(2)/M checkpoints in response to double-strand DNA breaks induced by ionizing radiation. We have previously demonstrated that one of the ATM substrates is Pin2/TRF1, a telomeric protein that binds the potent telomerase inhibitor PinX1, negatively regulates telomere elongation, and specifically affects mitotic progression. Following DNA damage, ATM phosphorylates Pin2/TRF1 and suppresses its ability to induce abortive mitosis and apoptosis (Kishi, S., Zhou, X. Z., Nakamura, N., Ziv, Y., Khoo, C., Hill, D. E., Shiloh, Y., and Lu, K. P. (2001) J. Biol. Chem. 276, 29282-29291). However, the functional importance of Pin2/TRF1 in mediating ATM-dependent regulation remains to be established. To address this question, we directly inhibited the function of endogenous Pin2/TRF1 in A-T cells by stable expression of two different dominant-negative Pin2/TRF1 mutants and then examined their effects on telomere length and DNA damage response. Both the Pin2/TRF1 mutants increased telomere length in A-T cells, as shown in other cells. Surprisingly, both the Pin2/TRF1 mutants reduced radiosensitivity and complemented the G(2)/M checkpoint defect without inhibiting Cdc2 activity in A-T cells. In contrast, neither of the Pin2/TRF1 mutants corrected the S phase checkpoint defect in the same cells. These results indicate that inhibition of Pin2/TRF1 in A-T cells is able to bypass the requirement for ATM in specifically restoring telomere shortening, the G(2)/M checkpoint defect, and radiosensitivity and demonstrate a critical role for Pin2/TRF1 in the ATM-dependent regulation of telomeres and DNA damage response.  相似文献   

14.
RASSF1A may be the most frequently inactivated tumor suppressor identified in human cancer so far. It is a proapoptotic Ras effector and plays an important role in the apoptotic DNA damage response (DDR). We now show that in addition to DDR regulation, RASSF1A also plays a key role in the DNA repair process itself. We show that RASSF1A forms a DNA damage-regulated complex with the key DNA repair protein xeroderma pigmentosum A (XPA). XPA requires RASSF1A to exert full repair activity, and RASSF1A-deficient cells exhibit an impaired ability to repair DNA. Moreover, a cancer-associated RASSF1A single-nucleotide polymorphism (SNP) variant exhibits differential XPA binding and inhibits DNA repair. The interaction of XPA with other components of the repair complex, such as replication protein A (RPA), is controlled in part by a dynamic acetylation/deacetylation cycle. We found that RASSF1A and its SNP variant differentially regulate XPA protein acetylation, and the SNP variant hyperstabilizes the XPA-RPA70 complex. Thus, we identify two novel functions for RASSF1A in the control of DNA repair and protein acetylation. As RASSF1A modulates both apoptotic DDR and DNA repair, it may play an important and unanticipated role in coordinating the balance between repair and death after DNA damage.  相似文献   

15.
16.
肿瘤是目前临床常见的疾病之一.肿瘤的经典治疗方式主要包括手术切除、放疗和化疗.近年来肿瘤治疗的手段不断发展,但许多进展期的肿瘤仍然未见较有效的治疗方式,因此亟需新的治疗手段.肿瘤细胞的特点是具有无限增殖和抵抗凋亡的能力.因此,鉴定参与肿瘤细胞增殖和凋亡的基因将为肿瘤治疗提供潜在的靶点.拮抗凋亡转录因子(apoptosi...  相似文献   

17.
18.
The peptidyl-prolyl isomerase Pin1 interacts in a phosphorylation-dependent manner with several proteins involved in cell cycle events. In this study, we demonstrate that Pin1 interacts with protein kinase CK2, an enzyme that generally exists in tetrameric complexes composed of two catalytic CK2 alpha and/or CK2 alpha' subunits together with two regulatory CK2 beta subunits. Our results indicate that Pin1 can interact with CK2 complexes that contain CK2 alpha. Furthermore, Pin1 can interact directly with the C-terminal domain of CK2 alpha that contains residues that are phosphorylated in vitro by p34(Cdc2) and in mitotic cells. Substitution of the phosphorylation sites of CK2 alpha with alanines resulted in decreased interactions between Pin1 and CK2. The other catalytic isoform of CK2, designated CK2 alpha', is not phosphorylated in mitotic cells and does not interact with Pin1, but a chimeric protein consisting of CK2 alpha' with the C terminus of CK2 alpha was phosphorylated in mitotic cells and interacts with Pin1, further implicating the phosphorylation sites in the interaction. In vitro, Pin1 inhibits the phosphorylation of Thr-1342 on human topoisomerase II alpha by CK2. Topoisomerase II alpha also interacts with Pin1 suggesting that the effect of Pin1 on the phosphorylation of Thr-1342 could result from its interactions with CK2 and/or topoisomerase II alpha. As compared with wild-type Pin1, isomerase-deficient and WW domain-deficient mutants of Pin1 are impaired in their ability to interact with CK2 and to inhibit the CK2-catalyzed phosphorylation of topoisomerase II alpha. Collectively, these results indicate that Pin1 and CK2 alpha interact and suggest a possible role for Pin1 in the regulation of topoisomerase II alpha. Furthermore, these results provide new insights into the functional role of the mitotic phosphorylation of CK2 and provide a new mechanism for selectively regulating the ability of CK2 to phosphorylate one of its mitotic targets.  相似文献   

19.
20.
Pin2/TRF1 was identified previously as both a protein (TRF1) that binds to telomeric DNA repeats and as a protein (Pin2) that associates with the kinase NIMA and suppresses its mitosis inducing activity. Pin2/TRF1 negatively regulates telomere length and also plays a critical role in cell cycle checkpoint control. Pin2/TRF1 is down-regulated in many human cancers and may be degraded by the ubiquitin-proteasome pathway, but components of the pathway involved in Pin2/TRF1 turnover have not been elucidated. By using the two-hybrid system, we recently identified Pin2/TRF1-interacting proteins, PinX1-4, and we demonstrated that PinX1 is a conserved telomerase inhibitor and a putative tumor suppressor. Here we report the characterization of PinX3. PinX3 was later found to be identical to Fbx4, a member of the F-box family of proteins, which function as substrate-specific adaptors of Cul1-based ubiquitin ligases. Fbx4 interacts with both Pin2 and TRF1 isoforms and promotes their ubiquitination in vitro and in vivo. Moreover, overexpression of Fbx4 reduces endogenous Pin2/TRF1 protein levels and causes progressive telomere elongation in human cells. In contrast, inhibition of Fbx4 by RNA interference stabilizes Pin2/TRF1 and promotes telomere shortening, thereby impairing cell growth. These results demonstrate that Fbx4 is a central regulator of Pin2/TRF1 protein abundance and that alterations in the stability of Pin2/TRF1 can have a dramatic impact on telomere length. Thus, Fbx4 may play a critical role in telomere maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号