首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Factors responsible for fluorescence quenching of the lipophylic fluorescent probe 4-dimethylaminochalcone in nonpolar and polar media were studied. The femtosecond dynamics of 4-dimethylaminochalcone excited state was measured using the absorption method of "excitation probing". In nonpolar hexane where the fluorescence quantum yield is very low (0.001), all excited 4-dimethylaminochalcone molecules go to the triplet state with a rate constant of 2.10(11) s(-1). At the same time, the radiation rate constant is 1000 times lower; therefore, such a fast transition to triplet is the major cause of the very small fluorescence yield. In polar acetone, the fluorescence yield is 220 times higher than in hexane. In acetone, no transitions to triplet state were detected. At the same time, a radiationless conversion to the ground state took place with a rate constant of 10(9) s(-1), which decreased the fluorescence yield to 0.22. The activation energy of the quenching processes is polarity dependent and decreases from 6 in nonpolar to 3 kcal/mol in polar media. The yield of 4-dimethylaminochalcone fluorescence varies hundreds times in media of different polarity but is a linear function of the Lippert's polarity parameter f(epsilon,n) where epsilon is the dielectric constant at low frequencies. It is supposed that polar media stabilize the "flat" conformation of the 4-dimethylaminochalcone molecule prior to its excitation, and this conformation is optimal for fluorescence. In this case, stabilization is determined only by medium polarity.  相似文献   

6.
The binding of lipophilic ions to the membrane of envelope vesicles from Halobacterium halobium was examined in the absence and presence of membrane potential. The lipophilic ions used constitute a homologous series of (Phe)3-P+-(CH2)n-CH3 (n = 0–4) and tetraphenylphosphonium (TPP+). In the absence of membrane potential, the amounts of binding were proportional to the probe concentration in the medium when the concentration is dilute. Upon illumination, interior negative membrane potential is generated which induces the uptake of phosphonium cation probe. 2 μM were employed as the initial probe concentration. The real membrane potential was evaluated by means of extrapolation to the state of no binding: The values of for various probes are plotted against the binding coefficient. Here, Ciapp is the apparent intra-vesicular concentration of the probes which is calculated without consideration of bound probes. The ordinate intercept of the plot gives the true concentration ratio, and from this the membrane potential is evaluated. The membrane potential-dependent binding was analysed with a model: the membrane is split into two halves, outer and inner half, and the amounts of bound probes in each region are governed by the concentration in the contiguous solution. We obtained a formula which describes amounts of binding as a function of the membrane potential.  相似文献   

7.
The lipophilic fluorescent probe trimethylamino-diphenylhexatriene (TMA-DPH) has been shown previously to behave as a marker of plasma membrane in living cell systems, and it has therefore been widely used in membrane fluidity studies via fluorescence anisotropy measurements. However, progressive internalization of this probe in cells could lead to unsuitable interferences, when long incubations times were required. The mechanism of this internalization had not yet been elucidated. We present here fluorescence-intensity kinetic results and fluorescence micrographic data on L929 cells and on mouse bone-marrow macrophages, which allow us to identify the mechanism as fluid-phase pinocytosis: the probe remains associated with the plasma membrane throughout its internalization-recycling flow and it is finally concentrated in lysosomes. The study was facilitated by the partition equilibrium property of TMA-DPH between plasma membranes and the external aqueous medium, which allowed to immediately distinguish the internalized fraction of the probe from the peripheral labelling, by simply washing cells. This conclusion is confirmed by the features of the influence of temperature on TMA-DPH internalization.  相似文献   

8.
9.
Trimethylammonium-diphenylhexatriene (TMA-DPH), a hydrophobic fluorescent probe, has been shown in earlier studies to possess a variety of particular properties in interaction with intact living cells —specific and rapid incorporation into the plasma membrane and partition equilibrium between the membranes and the buffer. These properties offer promising applications in membrane fluidity studies and in monitoring exocytosis kinetics. Furthermore, these properties offer a method described here for quantitative monitoring of phago-cytosis kinetics, by means of simple fluorescence intensity measurements. This method is original in that it evaluates only the particles which have actually been internalized by phagocytosis, and not those adsorbed on the cell surface, and that it gives quantitative information on the amount of plasma membrane involved in the process. It has been tested on mouse bone marrow macrophages.  相似文献   

10.
11.
A new rhodamine B-based pH fluorescent probe has been synthesized and characterized. The probe responds to acidic pH with short response time, high selectivity and sensitivity, and exhibits a more than 20-fold increase in fluorescence intensity within the pH range of 7.5–4.1 with the pKa value of 5.72, which is valuable to study acidic organelles in living cells. Also, it has been successfully applied to HeLa cells, for its low cytotoxicity, brilliant photostability, good membrane permeability and no ‘alkalizing effect’ on lysosomes. The results demonstrate that this probe is a lysosome-specific probe, which can selectively stain lysosomes and monitor lysosomal pH changes in living cells.  相似文献   

12.
N,N-dipentadecylaminostyrylpyridinium iodide is a dye that is approximately 100-fold more intensely fluorescent in a lipid than aqueous environment. This observation suggests its potential as a fluorescence stain for lipoproteins. This work reports the staining of LDL with this dye for use in studies of cellular binding. The staining procedure is simple, resulting in stable attachment of the dye as determined by transfer experiments, physical properties essentially identical to native LDL as demonstrated by virtually identical electrophoretic mobility, and consistent results in studies of cellular binding using flow cytometry. Increased signal to noise ratio over other dyes used for lipoprotein staining including the widely used Dil (3,3'-dioctadecylindocarbocyanine iodide) allows determinations of greater sensitivity and precision to be made. This is demonstrated by the flow cytometric determination of the 4 degrees C binding curve of LDL with freshly isolated human peripheral blood lymphocytes (i.e., cells not LDL receptor upregulated). Mediation of binding by the LDL receptor is demonstrated by correspondence between the LDL receptor dissociation constant derived from this work and literature values; increased specific binding in lymphocytes cultured in lipoprotein-deficient media to up-regulate the LDL receptor; and decreased specific binding in lymphocytes cultured in the presence of 25-hydroxy cholesterol for 48 h to suppress the LDL receptor.  相似文献   

13.
Tucker MJ  Oyola R  Gai F 《Biopolymers》2006,83(6):571-576
Recently, it is has been shown that the C=N stretching vibration of a non-natural amino acid, p-cyano-phenylalanine (PheCN), could be used as an infrared reporter of local environment. Here, we further showed that the fluorescence emission of PheCN is also sensitive to solvent and, therefore, could be used as a novel optical probe for protein binding and folding studies. Moreover, we found that the fluorescence quantum yield of PheCN is nearly five times larger than that of phenylalanine and, more importantly, can be selectively excited even when other aromatic amino acids are present, thus making it a more versatile fluorophore. To test the feasibility of using PheCN as a practical fluorescent probe, we studied the binding of calmodulin (CaM) to a peptide derived from the CaM-binding domain of skeletal muscle myosin light chain kinase (MLCK). The peptide (MLCK3CN) contains a single PheCN residue and has been shown to bind to CaM with high affinity. As expected, addition of CaM into a MLCK3CN solution resulted in quenching of the PheCN fluorescence. A series of stochiometric titrations further allowed us to determine the binding affinity (Kd) of this peptide to CaM. Taken together, these results indicated that the PheCN fluorescence is sensitive to environment and could be applicable to a wide variety of biological problems.  相似文献   

14.
15.
16.
Lipopeptides (LPs) are a structurally diverse class of amphipathic natural products that were in the past mainly known for their surfactant properties. However, the recent discovery of their antimicrobial and cytotoxic bioactivities have fueled and renewed the interest in this compound class. Propelled by the antimicrobial potential of this compound class, in this study a range of six underinvestigated LPs from Pseudomonads were examined with respect to their antibiotic activities towards bacteria. The assays revealed that only the glycosylated lipodipeptide SB-253514, produced by Pseudomonas strain SH-C52, showed significant antibacterial activity. Since the bioactivity of LPs is commonly attributed to membrane interactions, we analyzed the molecular interactions between the LPs and bacteria-like lipid model membranes in more detail via complementary biophysical approaches. Application of the quartz crystal microbalance (QCM) showed that all LPs possess a high binding affinity towards the model membranes. Despite their similar membrane affinity, monolayer studies displayed different tendencies of LPs to incorporate into the membrane. The degree of membrane incorporation could be correlated with specific structural features of the investigated LPs, such as distance between the peptidic macrocycle and the fatty acid, but did not fully reflect their respective antibacterial activity. Cyclic voltammetry (CV) experiments further demonstrated that SB-253514 showed no membrane permeabilization effects at inhibitory concentrations. Collectively, these results suggests that the antibacterial activity of SB-253514 cannot be explained by an unspecific detergent-like mechanism generally proposed for amphiphilic molecules but instead appears to occur via a defined structural target.  相似文献   

17.
Additon of pyocin R1, a bacteriocin of Pseudomonas aeruginosa, to sensitive cells caused a fluorescence increase of 8-anilino-1-naphthalenesulfonate (ANS) in the cell suspension. The reaction was rapid, starting with a short time lag after adsorption of pyocin onto the cells and finishing within several minutes. The fluorescence response was attributed to the interaction of the cell body and ANS, not to that of the medium outside the cells and ANS. The maximal amplitude of fluorescence after pyocin addition was dependent on temperature, and the relation appeared to be biphasic. Similarly, Arrhenius plots of the initial rate of fluorescence change were biphasic. The transition of slopes in both cases occurred in the temperature range between 18 and 19 degrees. These results suggest that ANS interacts with lipids in the cell envelope and that pyocin causes a structural change of the cell envelope leading to increased fluorescence of ANS.  相似文献   

18.
19.
We are using fluorescent endogenous phospholipids in virus membranes to study the factors that promote fusion on interaction with receptor membranes. To this end, vesicular stomatitis virus (VSV) grown in baby hamster kidney (BHK-21) cells was biologically labeled with fluorescent lipids, primarily phosphatidylcholine and phosphatidylethanolamine, derived from pyrene fatty acids. The pyrene lipids present in the virions showed a fluorescence spectrum typical of pyrene with an intense monomer and a broad excimer. Interaction of pyrene lipid labeled VSV with serum lipoproteins led to a spontaneous fast transfer of the small amount of pyrene fatty acids present in the envelope (t1/2 less than or equal to 7 min), followed by a considerably slower transfer of pyrene phospholipids from the membrane of the virions (t1/2 greater than or equal to 12 h). Incubation of pyrene phospholipid labeled VSV with phosphatidylserine small unilamellar vesicles resulted in fusion at low pH (pH 5.0) as measured by the change in the excimer/monomer fluorescence intensity ratio. Fusion kinetics was rapid, reaching a plateau after 4 min at pH 5.0 and 37 degrees C. Only negligible fusion was noted at neutral pH or at 4 degrees C. Fully infectious virions labeled biologically with fluorescent lipids provide a useful tool for studying mechanisms of cell-virus interactions and neutralization of viral infectivity by specific monoclonal antibodies reactive with viral membrane glycoprotein.  相似文献   

20.
The tryptophan analog, 5-hydroxytryptophan (5HW), has a significant absorbance between 310–320 nm, which allows it to act as an exclusive fluorescence probe in protein mixtures containing a large number of tryptophan residues. Here for the first time a method is reported for the biosynthetic incorporation of 5HW into an expressed protein, the Y57W mutant of the Ca2+ binding protein, oncomodulin. Fluorescence anisotropy and time-resolved fluorescence decay measurements of the interaction between anti-oncomodulin antibodies and the 5HW-incorporated oncomodulin conveniently provide evidence of complex formation and epitope identification that could not be obtained with the natural amino acid. This report demonstrates the significant potential for the use or 5HW as an intrinsic probe in the study of structure and dynamics of protein—protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号