首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As the killer toxin produced by Williopsis saturnus WC91-2 could kill many sensitive yeast strains, including the pathogenic ones, the extracellular killer toxin in the supernatant of cell culture of the marine yeast strain was purified and characterized. The molecular mass of the purified killer toxin was estimated to be 11.0kDa according to the data from SDS-PAGE. The purified killer toxin had killing activity, but could not hydrolyze laminarin. The optimal conditions for action of the purified killer toxin against the pathogenic yeast Metschnikowia bicuspidate WCY were the assay medium with 10% NaCl, pH 3-3.5 and temperature 16°C. The gene encoding the killer toxin from the marine killer yeast WC91-2 was cloned and the ORF of the gene was 378bp. The deduced protein from the cloned gene encoding the killer toxin had 125 amino acids with calculated molecular weight of 11.6kDa. It was also found that the N-terminal amino acid sequence of the purified killer toxin had the same corresponding sequence deduced from the cloned killer toxin gene in this marine yeast, confirming that the purified killer toxin was indeed encoded by the cloned gene.  相似文献   

2.
Some marine yeasts have recently been recognised as pathogenic agents in crab mariculture, but may be inhibited or killed by 'killer' yeast strains. We screened multiple yeast strains from seawater, sediments, mud of salterns, guts of marine fish, and marine algae for killer activity against the yeast Metchnikowia bicuspidata WCY (pathogenic to crab Portunus trituberculatus), and found 17 strains which could secrete toxin onto the medium and kill the pathogenic yeast. Of these, 5 strains had significantly higher killing activity than the others; routine identification and molecular methods showed that these were Williopsis saturnus WC91-2, Pichia guilliermondii GZ1, Pichia anomala YF07b, Debaryomyces hansenii hcx-1 and Aureobasidium pullulans HN2.3. We found that the optimal conditions for killer toxin production and action of killer toxin produced by the marine killer yeasts were not all in agreement with those of marine environments and for crab cultivation. We found that the killer toxins produced by the killer yeast strains could kill other yeasts in addition to the pathogenic yeast, and NaCl concentration in the medium could change killing activity spectra. All the crude killer toxins produced could hydrolyze laminarin and the hydrolysis end products were monosaccharides.  相似文献   

3.
The yeast Schwanniomyces occidentalis produces a killer toxin lethal to sensitive strains of Saccharomyces cerevisiae. Killer activity is lost after pepsin and papain treatment, suggesting that the toxin is a protein. We purified the killer protein and found that it was composed of two subunits with molecular masses of approximately 7.4 and 4.9 kDa, respectively, but was not detectable with periodic acid-Schiff staining. A BLAST search revealed that residues 3 to 14 of the 4.9-kDa subunit had 75% identity and 83% similarity with killer toxin K2 from S. cerevisiae at positions 271 to 283. Maximum killer activity was between pH 4.2 and 4.8. The protein was stable between pH 2.0 and 5.0 and inactivated at temperatures above 40 degrees C. The killer protein was chromosomally encoded. Mannan, but not beta-glucan or laminarin, prevented sensitive yeast cells from being killed by the killer protein, suggesting that mannan may bind to the killer protein. Identification and characterization of a killer strain of S. occidentalis may help reduce the risk of contamination by undesirable yeast strains during commercial fermentations.  相似文献   

4.
The psychrotolerant yeast Mrakia frigida 2E00797 isolated from sea sediment in Antarctica was found to be able to produce killer toxin against the pathogenic yeast (Metschnikowia bicuspidata WCY) in crab. When the psychrotolerant yeast was grown in the medium with pH 4.5 and 3.0% (wt/vol) NaCl and at 15°C, it could produce the highest amount of killer toxin against the pathogenic yeast M. bicuspidata WCY. The crude killer toxin activity against the pathogenic yeast M. bicuspidata WCY was the highest when it grew at 15°C in the assay medium with 3.0% (wt/vol) NaCl and pH 4.5. At temperatures higher than 25°C, the killing activity produced by M. frigida 2E00797 was completely lost and after the crude killer toxin was pre-incubated at temperatures higher than 40°C for 4 h, the killing activity was also completely lost. The killer toxin produced by M. frigida 2E00797 could kill only M. bicuspidata WCY, Candida tropicalis and Candida albicans among all the fungal species and bacterial species tested in this study.  相似文献   

5.
The yeast Schwanniomyces occidentalis produces a killer toxin lethal to sensitive strains of Saccharomyces cerevisiae. Killer activity is lost after pepsin and papain treatment, suggesting that the toxin is a protein. We purified the killer protein and found that it was composed of two subunits with molecular masses of approximately 7.4 and 4.9 kDa, respectively, but was not detectable with periodic acid-Schiff staining. A BLAST search revealed that residues 3 to 14 of the 4.9-kDa subunit had 75% identity and 83% similarity with killer toxin K2 from S. cerevisiae at positions 271 to 283. Maximum killer activity was between pH 4.2 and 4.8. The protein was stable between pH 2.0 and 5.0 and inactivated at temperatures above 40°C. The killer protein was chromosomally encoded. Mannan, but not β-glucan or laminarin, prevented sensitive yeast cells from being killed by the killer protein, suggesting that mannan may bind to the killer protein. Identification and characterization of a killer strain of S. occidentalis may help reduce the risk of contamination by undesirable yeast strains during commercial fermentations.  相似文献   

6.
In batch culture in a complex medium the killer yeasts NCYC 738 and NCYC 235 gave maximal killer activity when grown in the pH ranges 4·2–4·4 and 4·6–4·8 respectively. Incubation of culture filtrates of NCYC 738 for 10 h at 25 °C or 2 h at 29 °C resulted in a 50% reduction in activity. The addition of bovine serum albumin or gelatine to a complex medium stabilized killer activity. In a defined medium the addition of yeast extract stimulated the production of killer activity. When killer yeast NCYC 738 was grown in a chemostat, killer activity was influenced by temperature, pH and the rate at which the culture was stirred. The production of killer activity was growth-linked and increased as dilution rate was raised to a maximum of 0·15 h"1. Steady state continuous cultures of the sensitive strain, NCYC 1006, were contaminated deliberately with either killer or killer-cured strains. During the first 30 h cultivation, the cell concentration of both strains increased. Subsequently the sensitive strain was displaced from the culture. When killer-cured NCYC 738 was added, the rate of displacement was proportional to the culture temperature. However, with killer NCYC 738 increase of temperature reduced the rate of displacement. When killer NCYC 235 was employed, a lowering of pH decreased the rate of displacement but had no effect when killer-cured NCYC 235 was used.  相似文献   

7.
The killer toxin from Pichia membranifaciens CYC 1106, a yeast isolated from fermenting olive brines, binds primarily to the (1-->6)-beta-D-glucan of the cell wall of a sensitive yeast (Candida boidinii IGC 3430). The (1-->6)-beta-D-glucan was purified from cell walls of C. boidinii by alkali and hot-acetic acid extraction, a procedure which solubilizes glucans. The major fraction of receptor activity remained with the alkali-insoluble (1-->6)-beta- and (1-->3)-beta-D-glucans. The chemical (gas-liquid chromatography) and structural (periodate oxidation, infrared spectroscopy, and (1)H nuclear magnetic resonance) analyses of the fractions obtained showed that (1-->6)-beta-D-glucan was a receptor. Adsorption of most of the killer toxin to the (1-->6)-beta-D-glucan was complete within 2 min. Killer toxin adsorption to the linear (1-->6)-beta-D-glucan, pustulan, and a glucan from Penicillium allahabadense was observed. Other polysaccharides with different linkages failed to bind the killer toxin. The specificity of the killer toxin for its primary receptor provides an effective means to purify the killer toxin, which may have industrial applications for fermentations in which salt is present as an adjunct, such as olive brines. This toxin shows its maximum killer activity in the presence of NaCl. This report is the first to identify the (1-->6)-beta-D-glucan as a receptor for this novel toxin.  相似文献   

8.
The competition between selected or commercial killer strains of type K2 and sensitive commercial strains of Saccharomyces cerevisiae was studied under various conditions in sterile grape juice fermentations. The focus of this study was the effect of yeast inoculation levels and the role of assimilable nitrogen nutrition on killer activity. A study of the consumption of free amino nitrogen (FAN) by pure and mixed cultures of killer and sensitive cells showed no differences between the profiles of nitrogen assimilation in all cases, and FAN was practically depleted in the first 2 days of fermentation. The effect of the addition of assimilable nitrogen and the size of inoculum was examined in mixed killer and sensitive strain competitions. Stuck and sluggish wine fermentations were observed to depend on nitrogen availability when the ratio of killer to sensitive cells was low (1:10 to 1:100). A relationship between the initial assimilable nitrogen content of must and the proportion of killer cells during fermentation was shown. An indirect relationship was found between inoculum size and the percentage of killer cells: a smaller inoculum resulted in a higher proportion of killer cells in grape juice fermentations. In all cases, wines obtained with pure-culture fermentations were preferred to mixed-culture fermentations by sensory analysis. The reasons why killer cells do not finish fermentation under competitive conditions with sensitive cells are discussed.  相似文献   

9.
The occurrence of killer character in yeasts of various genera.   总被引:9,自引:0,他引:9  
Species of 7 of the 28 yeast genera in the National Collection of Yeast Cultures exhibited killing activity against Saccharomyces cerevisiae. The highest incidence of killer yeasts was found in the genus Hansenula (12 of the 29 strains examined). Saccharomyces, the best represented genus in the Collection, showed a low incidence of killer activity and many of the killer strains are hybrids with a common S. cerevisiae parent. The activities of culture filtrates of the 59 killer yeast isolated responded differently to pH and four types of response were recognised.  相似文献   

10.
The yeast Kluyveromyces siamensis HN12-1 isolated from mangrove ecosystem was found to be able to produce killer toxin against the pathogenic yeast (Metschnikowia bicuspidata WCY) in crab. When the killer yeast was grown in the medium with pH 4.0 and 0.5% NaCl and at 25 °C, it could produce the highest amount of killer toxin against the pathogenic yeast M. bicuspidata WCY. The killing activity of the purified killer toxin against the pathogenic yeast M. bicuspidata WCY was the highest when it was incubated at 25 °C in the assay medium without added NaCl and pH 4.0. The molecular weight of the purified killer toxin was 66.4 kDa. The killer toxin produced by the yeast strain HN12-1 could kill only the whole cells of M. bicuspidata WCY among all the yeast species tested in this study. This is the first time to report that the killer toxin produced by the yeast K. siamensis HN12-1 isolated from the mangrove ecosystem only killed pathogenic yeast M. bicuspidata WCY.  相似文献   

11.
Summary A hybrid of Saccharomyces cerevisiae with the ability to utilize starch and to produce the killer toxin was constructed by the protoplast fusion technique. The hybrid was obtained in two steps. In the first, a wild killer strain was fused with a laboratory strain (S. cerevisiae STA2). A fusion product which carried the killer factor and the ability to grow on starch was selected. In the second step, this hybrid was fused with a baker's yeast.  相似文献   

12.
The ecological role of killer yeasts in natural communities of yeasts   总被引:12,自引:0,他引:12  
The killer phenomenon of yeasts was investigated in naturally occurring yeast communities. Yeast species from communities associated with the decaying stems and fruits of cactus and the slime fluxes of trees were studied for production of killer toxins and sensitivity to killer toxins produced by other yeasts. Yeasts found in decaying fruits showed the highest incidence of killing activity (30/112), while yeasts isolated from cactus necroses and tree fluxes showed lower activity (70/699 and 11/140, respectively). Cross-reaction studies indicated that few killer-sensitive interactions occur within the same habitat at a particular time and locality, but that killer-sensitive reactions occur more frequently among yeasts from different localities and habitats. The conditions that should be optimal for killer activity were found in fruits and young rots of Opuntia cladodes where the pH is low. The fruit habitat appears to favor the establishment of killer species. Killer toxin may affect the natural distribution of the killer yeast Pichia kluyveri and the sensitive yeast Cryptococcus cereanus. Their distributions indicate that the toxin produced by P. kluyveri limits the occurrence of Cr. cereanus in fruit and Opuntia pads. In general most communities have only one killer species. Sensitive strains are more widespread than killer strains and few species appear to be immune to all toxins. Genetic study of the killer yeast P. kluyveri indicates that the mode of inheritance of killer toxin production is nuclear and not cytoplasmic as is found in Saccharomyces cerevisiae and Kluyveromyces lactis.  相似文献   

13.
The interactions between 20 killer yeasts of various genera and species were examined. Ten distinct groups were recognised with respect to killer activity and 10 distinct groups with respect to resistance to killer action. Using both killing and resistance phenotypes, 13 classes of killer yeast were found. With the exception of Torulopsis glabrata NCYC 388, non-Saccharomyces strains of yeast were not killed by a member of the genus Saccharomyces.The killer character of the 3 killing groups of Saccharomyces identified could be cured by treatment with cycloheximide or incubation at elevated temperature and the effectiveness of these procedures was indicative of the category of killer yeast examined. Killer yeasts not belonging to the genus Saccharomyces could not be cured of their activity. Double-stranded ribonucleic acids were extracted only from Saccharomyces spp. and the molecular weights of the species present were a function of the killer class to which a strain belonged.By an analysis of the effects of proteolytic enzymes, temperature and pH on killer activity and by gel chromatography of crude preparations of killer factors, the toxins of different killer classes were shown to be biochemically distinct. However all toxins had certain properties in common consistent with there being a protein component essential to killer action.  相似文献   

14.
The marine-derived Williopsis saturnus WC91-2 was found to produce very high killer toxin activity against the pathogenic yeast Metschnikowia bicuspidata WCY isolated from the diseased crab. It is interesting to observe that the purified β-1,3-glucanase from W. saturnus WC91-2 had no killer toxin activity but could inhibit activity of the WC91-2 toxin produced by the same yeast. In contrast, the WC91-2 toxin produced had no β-1,3-glucanase activity. We found that the mechanisms of the inhibition may be that the β-1,3-glucanase competed for binding to β-1,3-glucan on the sensitive yeast cell wall with the WC91-2 toxin, causing decrease in the amount of the WC91-2 toxin bound to β-1,3-glucan on the sensitive yeast cell wall and the activity of the WC91-2 toxin against the sensitive yeast cells. In order to make W. saturnus WC91-2 produce high activity of the WC91-2 toxin against the yeast disease in crab, it is necessary to delete the gene encoding β-1,3-glucanase.  相似文献   

15.
In our previous study, it was found that the killer toxin produced by the marine-derived yeast Wickerhamomyces anomalus YF07b has both killing activity and β-1,3-glucanase activity and the molecular mass of it is 47.0 kDa. In this study, the same yeast strain was found to produce another killer toxin which only had killing activity against some yeast strains, but had no β-1,3-glucanase activity and the molecular mass of the purified killer toxin was 67.0 kDa. The optimal pH, temperature and NaCl concentration for action of the purified killer toxin were 3.5, 16 °C and 4.0 % (w/v), respectively. The purified killer toxin could be bound by the whole sensitive yeast cells, but was not bound by manann, chitin and β-1,3-glucan. The purified killer toxin had killing activity against Yarrowia lipolytica, Saccharomyces cerevisiae, Metschnikowia bicuspidata WCY, Candida tropicalis, Candida albicans and Kluyveromyces aestuartii. Lethality of the sensitive cells treated by the newly purified killer toxin from W. anomalus YF07b involved disruption of cellular integrity by permeabilizing cytoplasmic membrane function.  相似文献   

16.
Interactions between killer yeasts and pathogenic fungi   总被引:4,自引:0,他引:4  
Abstract A total of 17 presumptive killer yeast strains were tested in vitro for growth inhibitory and killing activity against a range of fungal pathogens of agronomic, environmental and clinical significance. Several yeasts were identified which displayed significant activity against important pathogenic fungi. For example, isolates of the opportunistic human pathogen, Candida albicans , were generally very sensitive to Williopsis mrakii killer yeast activity, whilst killer strains of Saccharomyces cerevisiae and Pichia anomala markedly inhibited the growth of certain wood decay basidiomycetes and plant pathogenic fungi. Results indicate that such yeasts, together with their killer toxins, may have potential as novel antimycotic biocontrol agents.  相似文献   

17.
Numerous yeast species in many genera are able to produce and excrete extracellular toxic proteins (mycocins) that can kill other specific sensitive yeasts. Natural distributions of killer yeasts suggest that they may be important in maintaining community composition and provide a benefit to the toxin producing cells. The fact that not all yeasts are killers and that polymorphisms exist within some killer species suggests there may be a cost associated with killer toxin production. This study focuses on the costs and benefits associated with toxin production by the yeast Pichia kluyveri. Strains differing in their ability to kill were obtained by tetrad dissection. One parent strain produced spores that exhibited a trade-off between killing ability and intrinsic growth rate. A killer clone from this strain was able to maintain a higher proportion of cells than a non-killer when grown with the same sensitive yeast under laboratory-simulated natural conditions. On the other hand, when grown with a yeast not sensitive to Pichia kluyveri toxin, the non-killer maintained a higher proportion of the total community than did the killer clone. The data support the hypothesis that there are both costs and benefits to producing killer toxin, and based on this, selection may favor different phenotypes in different conditions.  相似文献   

18.
Species of 7 of the 28 yeast genera in the National Collection of Yeast Cultures exhibited killing activity againstSaccharomyces cerevisiae. The highest incidence of killer yeasts was found in the genusHansenula (12 of the 29 strains examined).Saccharomyces, the best represented genus in the Collection, showed a low incidence of killer activity and many of the killer strains are hybrids with a commonS. cerevisiae parent. The activities of culture filtrates of the 59 killer yeast isolated responded differently to pH and four types of response were recognised.  相似文献   

19.

The use of natural antimicrobials from plants, animals and microorganisms to inhibit the growth of pathogenic and spoilage microorganisms is becoming more frequent. This parallels the increased consumer interest towards consumption of minimally processed food and ‘greener’ food and beverage additives. Among the natural antimicrobials of microbial origin, the killer toxin produced by the yeast Tetrapisispora phaffii, known as Kpkt, appears to be a promising natural antimicrobial agent. Kpkt is a glycoprotein with β-1,3-glucanase and killer activity, which induces ultrastructural modifications to the cell wall of yeast of the genera Kloeckera/Hanseniaspora and Zygosaccharomyces. Moreover, Kpkt maintains its killer activity in grape must for at least 14 days under winemaking conditions, thus suggesting its use against spoilage yeast in wine making and the sweet beverage industry. Here, the aim was to explore the possibility of high production of Kpkt for biotechnological exploitation. Molecular tools for heterologous production of Kpkt in Komagataella phaffii GS115 were developed, and two recombinant clones that produce up to 23 mg/L recombinant Kpkt (rKpkt) were obtained. Similar to native Kpkt, rKpkt has β-glucanase and killer activities. Moreover, it shows a wider spectrum of action with respect to native Kpkt. This includes effects on Dekkera bruxellensis, a spoilage yeast of interest not only in wine making, but also for the biofuel industry, thus widening the potential applications of this rKpkt.

  相似文献   

20.
The secretion of killer toxins by some strains of yeasts is a phenomenon of significant industrial importance. The activity of a recently discovered Kluyveromyces lactis killer strain against a sensitive Saccharomyces cerevisiae strain was determined on peptone-yeast extract-nutrient agar plates containing as the carbon source glucose, fructose, galactose, maltose, or glycerol at pH 4.5 or 6.5. Enhanced activity (50 to 90% increase) was found at pH 6.5, particularly on the plates containing galactose, maltose, or glycerol, although production of the toxin in liquid medium was not significantly different with either glucose or galactose as the carbon source. Results indicated that the action of the K. lactis toxin was not mediated by catabolite repression in the sensitive strain. Sensitivities of different haploid and polyploid Saccharomyces yeasts to the two different killer yeasts S. cerevisiae (RNA-plasmid-coded toxin) and K. lactis (DNA-plasmid-coded toxin) were tested. Three industrial polyploid yeasts sensitive to the S. cerevisiae killer yeast were resistant to the K. lactis killer yeast. The S. cerevisiae killer strain itself, however, was sensitive to the K. lactis killer yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号