首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abstract: Administration of l -DOPA (50 mg/kg) elicits a significant increase in extracellular dopamine in striata of rats treated with the catecholaminergic neurotoxin 6-hydroxydopamine but not in striata of intact rats. To assess the role of dopaminergic nerve terminals in determining the effects of exogenous l -DOPA on extracellular dopamine levels in striatum, we examined the relative contributions of monoamine oxidase A and monoamine oxidase B to the catabolism of dopamine synthesized from exogenous l -DOPA. Extracellular concentrations of dopamine and its catabolite, 3,4-dihydroxyphenylacetic acid, were monitored with in vivo dialysis in striata of intact rats and of rats with unilateral 6-hydroxydopamine lesions of striatal dopamine. Clorgyline (2 mg/kg), an inhibitor of monoamine oxidase A, significantly increased dopamine and decreased 3,4-dihydroxyphenylacetic acid in intact but not in dopamine-depleted striata. Inhibition of monoamine oxidase B with either l -deprenyl (1 mg/kg) or Ro 19-6327 (1 mg/kg) did not significantly affect dopamine or 3,4-dihydroxyphenylacetic acid in striata of intact or dopamine-depleted rats. In intact rats, administration of clorgyline in conjunction with l -DOPA produced a >20-fold increase in dopamine and prevented the l -DOPA-induced increase in 3,4-dihydroxyphenylacetic acid. Although both l -deprenyl and Ro 19-6327 administered in combination with l -DOPA elicited a small but significant increase in dopamine, levels of 3,4-dihydroxyphenylacetic acid were not affected. In rats pretreated with 6-hydroxydopamine, clorgyline had no significant effect on the increases in dopamine and 3,4-dihydroxyphenylacetic acid elicited by l -DOPA. Furthermore, neither l -deprenyl nor Ro 19-6327 affected l -DOPA-induced increases in dopamine and 3,4-dihydroxyphenylacetic acid in dopamine-depleted striata. The present findings indicate that deamination by monoamine oxidase A is the primary mechanism for catabolism of striatal dopamine, both under basal conditions and after administration of exogenous l -DOPA. Loss of dopaminergic terminals eliminates this action of monoamine oxidase A but does not enhance deamination by monoamine oxidase B. These data support a model in which exogenous l -DOPA elicits enhanced extracellular accumulation of dopamine in the dopamine-depleted striatum because some transmitter synthesis occurs at nondopaminergic sites and the dopamine terminals that normally take up and catabolize this pool of transmitter are absent.  相似文献   

2.
The activities of mitochondrial type A and B monoamine oxidase were determined in the liver of rats fed a diet containing 2-acetylaminofluorene (AAF). Three days after the initiation of AAF-feeding, there was a significant decrease of type B monoamine oxidase activity without affect on type A enzyme. The decreased activity of type B monoamine oxidase, which reached a minimum after three weeks, was sustained for as long as AAF-feeding was continued. Sex-related difference in response to AAF was seen in the rat with respect to the onset and the intensity of the decreased type B monoamine oxidase activity, male rats being more sensitive to the carcinogen than female rats. In contrast to the in vivo effect, AAF showed a potent inhibitory effect on type A monoamine oxidase, rather than on type B enzyme, when added in vitro. The pI50 values were estimated to be 7.5 against type A monoamine oxidase and 4.1 against type B enzyme, respectively. The in vitro inhibition of both types of monoamine oxidase by AAF was competitive. The Ki values for AAF were calculated to be 9.51 · 10?9 M for type A monoamine oxidase and 1.30 · 10?5 M for type B enzyme, respectively. In accordance with the potent inhibitory effect of AAF on type A monoamine oxidase in vitro, a single administration of the carcinogen, at a dose of 50 mg/kg, resulted in a marked and temporal decrease of the enzyme activity in the mitochondria of male rat liver. Recovery of the decreased type B monoamine oxidase activity was slow, and the enzyme activity did not return to control levels, even if rats were fed the basal diet for 2 or 4 weeks after the cessation of AAF-feeding.  相似文献   

3.
the effects of 6-aminodopamine on central and peripheral catecholamine neurons using fluorescence histochemical and isotope techniques have been investigated. Systematic administration of 6-aminodopamine (20 mg/kg intraveneously) produced a rapid (within 1 h) and long-lasting depletion of endogenous noradrenaline in adrenergic nerves of mouse atrium and iris with a concomitant loss of [3H]noradrenaline uptake. The effects were dosedependent. Accumulations of noradrenaline in non-terminal axons were observed histochemically, indicating that 6-aminodopamine induces neuronal damage. Desipramine completely blocked the 6-aminodopamine induced noradrenaline depletion and reduction in [3H]noradrenaline uptake, indicating that 6-aminodopamine has to be taken up by the axonal ‘membrane pump’ to produce its effects. Themonoamine oxidase inhibitor, nialamide, potentiated the effect of 6-aminodopamine on [3H]noradrenaline uptake. 6-Aminodopamine did not affect the cell bodies of the adrenergic neurons and there was a reappearance of adrenergic nerves and recovery of [3H]noradrenaline uptake. 6-Aminodopamine does not seem to pass the blood-brain barrier after systemic injection. Intraventricular injection of 6-aminodopamine in rats led to a considerable reduction in endogenous whole brain noradrenaline and [3H]noradrenaline uptake in slices from cerebral cortex and hypothalamus. Similar, but less pronounced effects were observed on dopamine neurons in the caudate nucleus. Histochemically, pronounced accumulations of transmitter were observed in the axons of the catecholamine neurons. The results obtained favour the view that 6-aminodopamine is able to produce an acute and selective degeneration of catecholamine neurons similar to that seen after the neurotoxicagent, 6-hydroxydopamine. Both compounds seemed to be approximately equally potent in their neurotoxicity, although 6-aminodopamine seemed to be more generally toxic.  相似文献   

4.
It was previously shown that 5-hexyne-1,4-diamine is a potent enzyme-activated irreversible inhibitor of mammalian ornithine decarboxylase. However this compound has secondary pharmacological effects owing to its in vivo oxidation to 4-aminohex-5-ynoic acid, an irreversible inhibitor of 4-aminobutyrate aminotransferase. The first step of this oxidation is catalysed by mitochondrial monoamine oxidase. The monomethyl and dimethyl analogues of 5-hexyne-1,4-diamine, i.e. 6-heptyne-2,5-diamine and 2-methyl-6-heptyne-2,5-diamine, which cannot be substrate of monoamine oxidase, were tested as selective irreversible inhibitors of ornithine decarboxylase. Our results demonstrate that (2R,5R)-6-heptyne-2,5-diamine is greater than 10 times more potent, both in vitro and in vivo, than α-difluoromethylornithine, the most widely used irreversible inhibitor of this enzyme.  相似文献   

5.
M W Dudley 《Life sciences》1988,43(23):1871-1877
Inhibition of monoamine oxidase A through pretreatment of rats with clorgyline (10 mg/kg ip) or the pro-drug MDL 72,394 (0.5 mg/kg ip) did not block the amine-depleting action of xylamine (25 mg/kg ip). Xylamine treatment resulted in a loss of approximately 60% of the control level of norepinephrine in the cerebral cortex. A 1-hr pretreatment, but not a 24-hr pretreatment, with the monoamine oxidase B inhibitor, L-deprenyl (10 mg/kg ip), prevented the depletion of norepinephrine by xylamine. In addition, pretreatment with MDL 72,974 (1.25 mg/kg ip), a monoamine oxidase B inhibitor without amine-releasing or uptake - inhibiting effects, did not protect cortical norepinephrine levels. Inhibition of monoamine oxidase by either MDL 72,974 or MDL 72,394 did not prevent the inhibition of [3H]norepinephrine uptake into rat cortical synaptosomes by xylamine. These data indicate that monoamine oxidase does not mediate the amine-releasing or uptake inhibiting properties of xylamine. The protection afforded by L-deprenyl following a 1-hr pretreatment most probably was due to accumulation of its metabolite, L-amphetamine, which would inhibit the uptake carrier. A functional carrier is required for depletion since desipramine (20 mg/kg ip) administered 1 hr prior to xylamine, was also able to prevent depletion of norepinephrine.  相似文献   

6.
Inhibition of monoamine oxidase by substituted hydrazines   总被引:1,自引:1,他引:0  
1. The initial rate of inhibition of monoamine oxidase by phenethylhydrazine was shown to be similar, in pH-dependence and kinetic properties, to the oxidation of that compound by monoamine oxidase. 2. The time-course of irreversible inhibition of monoamine oxidase by phenethylhydrazine lags behind that of reversible inhibition. 3. Hydralzine was shown to be a reversible competitive inhibitor of monoamine oxidase, but phenylhydrazine is an irreversible inhibitor. Inhibition by the latter compound is not affected by the absence of oxygen, and the presence of substrate exerts no protective action. 4. Hydrazine does not inhibit monoamine oxidase unless a substrate and oxygen are present. 5. Phenethylidenehydrazine was found to be a time-dependent inhibitor of monoamine oxidase and the rate of inhibition was hindered by increasing oxygen concentration. 6. A mechanism for the inhibition of the enzyme by phenethylhydrazine is proposed in which the product of oxidation of this compound is a potent reversible inhibitor and an irreversible inhibitor of the enzyme. A computer simulation of such a mechanism predicts time-courses of inhibition that are in reasonable agreement with those observed experimentally.  相似文献   

7.
Neurotransmitter release from sympathetic terminals is a key avenue for heart regulation. Herein, presynaptic exocytotic activity was monitored in mice atrial tissue using a false fluorescent neurotransmitter FFN511, a substrate for monoamine transporters. FFN511 labeling had similarity with tyrosine hydroxylase immunostaining. High [K+]o depolarization caused FFN511 release, which was augmented by reserpine, an inhibitor of neurotransmitter uptake. However, reserpine lost the ability to increase depolarization-induced FFN511 unloading after depletion of ready releasable pool with hyperosmotic sucrose. Cholesterol oxidase and sphingomyelinase modified atrial membranes, changing in opposite manner fluorescence of lipid ordering-sensitive probe. Plasmalemmal cholesterol oxidation increased FFN511 release upon K+-depolarization and more markedly potentiated FFN511 unloading in the presence of reserpine. Hydrolysis of plasmalemmal sphingomyelin profoundly enhanced the rate of FFN511 loss due to K+-depolarization, but completely prevented potentiating action of reserpine on FFN511 unloading. If cholesterol oxidase or sphingomyelinase got access to membranes of recycling synaptic vesicles, then the enzyme effects were suppressed. Hence, a fast neurotransmitter reuptake dependent on exocytosis of vesicles from ready releasable pool occurs during presynaptic activity. This reuptake can be enhanced or inhibited by plasmalemmal cholesterol oxidation or sphingomyelin hydrolysis, respectively. These modifications of plasmalemmal (but not vesicular) lipids increase the evoked neurotransmitter release.  相似文献   

8.
—The effects of systemically administered 2,4,5-trihydroxyphenylalanine (6-OH-DOPA) on endogenous noradrenaline, [3H]amine uptake and fluorescence morphology has been investigated in mouse brain, heart and iris. 6-OH-DOPA in a dose of 100 mg/kg intraperitoneally caused practically no changes in these parameters. Pretreatment with a potent monoamine oxidase inhibitor (nialamide) led to a pronounced long-lasting 6-OH-DOPA induced reduction in endogenous noradrenaline, [ 3 H]amine uptake and nerve density of noradrenaline nerve terminals both in the central and peripheral nervous system. Histochemically accumulations of noradrenaline were observed in non-terminal axons. These results strongly support the view that 6-OH-DOPA can produce degeneration of both central and peripheral noradrenaline neurons. The degeneration is mediated by decarboxylation of 6-OH-DOPA to 6-OH-DA, since the effects could be abolished by decarboxylase inhibition. The effect of 6-OH-DOPA was selective on noradrenaline neurons in the brain, since neither 5-hydroxytryptamine nor dopamine neurons were affected, opening up new possibilities for studies on central noradrenaline transmitter mechanisms. In the brain there were pronounced accumulations of noradrenaline in the ascending noradrenaline axons making 6-OH-DOPA a powerful tool in the mapping of central noradrenaline pathways.  相似文献   

9.
Psychotropic drugs which were either monoamine oxidase inhibitors or tricyclic antidepressants were screened and found to be potent inhibitors of prostaglandin biosynthesis in cell-free homogenates of guinea pig lung. ID50 values are reported. Phenelzine was found to be a more potent inhibitor than indomethacin with an ID50 of 3.7 × 10−7 M.  相似文献   

10.
SINCE 6-hydroxydopamine does not cross the blood-brain barrier in adult animals1, it has to be given by intracerebral injection to produce specific degeneration of catecholamine-containing nerve endings in the central nervous system2,3. The resulting permanent depletion of noradrenaline and dopamine in all regions of the brain makes it difficult to determine the neuronal tracts and brain regions involved in a physiological or behavioural disfunction after 6-hydroxydopamine treatment4. Localization of nerve destruction can be improved by direct intracerebral injection of 6-hydroxydopamine at specific neuronal sites5 by pretreatment with drugs that affect catecholamine uptake6 or by varying the dosage of 6-hydroxydopamine7. These procedures are, however, technically difficult.  相似文献   

11.
Human monoamine oxidase A that had been synthesized in a reticulocyte lysate translation system was capable of binding to and inserting into either rat liver mitochondria or isolated mitochondrial outer membranes. The inserted form was as resistant to proteinase K as endogenous mitochondrial monoamine oxidase A. The insertion, but not the binding, of monoamine oxidase A was prevented by depleting the reaction mixture of either ATP (with apyrase) or ubiquitin (with purified antibodies against this polypeptide). Addition of ATP or ubiquitin, respectively, to these depleted mixtures restored the insertion of the enzyme. In the absence of mitochondria, in vitro synthesized monoamine oxidase A did not catalyze its own alkylation by the mechanism-based inhibitor, [3H]clorgyline. However, both monoamine oxidase A that had been membrane-inserted in vitro and monoamine oxidase A that had been bound to the mitochondria under conditions of ATP depletion catalyzed adduct formation. Furthermore, reaction of either clorgyline or another mechanism-based inhibitor, pargyline, with the membrane-bound enzyme during ATP depletion inhibited the insertion of monoamine oxidase A when ATP was restored. These observations indicate that monoamine oxidase A acquired a catalytically active conformation on interaction with the mitochondrial outer membranes prior to its ATP and ubiquitin-dependent insertion into the membrane.  相似文献   

12.
Feedback control of rat brain 5-hydroxytryptamine synthesis   总被引:1,自引:1,他引:0  
Abstract— The effect of increased levels of 5-hydroxytryptamine (5-HT) on the synthesis of [3H]5-HT from intracisternally injected tracer doses of [3H]tryptophan was studied in the rat brain stem. The [3H]5-HT which accumulated in the first 15 min after [3H]tryptophan injection was measured at various times after the acute intraperitoneal administration of the monoamine oxidase inhibitors Catron or Pargyline. The 5-HT levels reached two and three times control values respectively at 20 min and 180 min after monoamine oxidase inhibitor administration but [3H]5-HT accumulation was decreased (40 per cent) at 180 min when compared with 20 min. These data as well as those obtained after chronic treatment with monoamine oxidase inhibitors revealed that there is an inverse relationship between [3H]5-HT accumulation and the endogenous 5-HT level. Monoamine oxidase activity was undetectable during all the intervals in which [3H]5-HT accumulation was measured. No inhibition of [3H]5-HT accumulation was detected when [3H]5-hydroxytryptophan was injected instead of [3H]tryptophan. The results are consistent with a negative feedback of 5-HT synthesis at the rate-limiting tryptophan hydroxylation step.  相似文献   

13.
The hydroxylated phenylethylamines p-tyramine, m-tyramine, octopamine, metaraminol and norepinephrine were accumulated by homogenates of rat brain much more vigorously than β-phenethylamine or amphetamine. The affinity concentrations (Km) for initial (5-min) uptake by homogenates of whole brain were 0.5, 3 and 6 μM for DL-norepine-phrine, p-tyramine and DL-octopamine, respectively. The uptake of these three hydroxylated compounds was much more vigorous in striatal tissue than in cortical tissue, and in both tissues the rate of uptake decreased in the sequence: norepinephrine > tyramine > octopamine. The uptake of these three substances was inhibited by reduced temperature, by lack of glucose, by CN- and DNP, and by desmethylimipramine, cocaine and ouabain. The uptake of norepinephrine and octopamine appeared to require Na+. Pretreatment of rats with reserpine or 6-hydroxydopamine decreased the ability of brain to take up norepinephrine or octopamine. Previously accumulated labelled phenylethylamines migrated in sucrose density gradients with a peak of radioactivity corresponding to an equilibrium position of catecholamine-containing nerve endings. The magnitude of the retention of [3H]amine in this synaptosornal peak decreased in the order: norepinephrine > octopamine > tyramine. The accumulated amines were released by sonic, osmotic and thermal stresses which disrupt neuronal membranes. The presence of a β-hydroxyl group appeared to protect amines from destruction by monoamine oxidase, presumably by virtue of uptake in presynaptic storage vesicles. During superfusion, tyramine and metaraminol appeared to displace [3H]norepinephrine from binding sites in brain slices.  相似文献   

14.
Indole(ethyl)amine N-Methyltransferase in Human Brain   总被引:3,自引:0,他引:3  
TANIMUKAI et al.1, using gas-liquid separation, correlated the appearance of a bufotenin-like substance in urine and the onset of psychosis in latent schizophrenics brought on by administration of a monoamine oxidase inhibitor with amino-acid precursors of indoleamines and methyl groups. Serious doubt about endogenous bufotenin as the cause of psychiatric disturbance was cast by research demonstrating that intravenously administered bufotenin produced nothing but bizarre cardiovascular symptoms in man2, 3. One objection to such work is that bufotenin may not easily cross the blood-brain barrier. Recent preliminary evidence gathered in our laboratories from rats infused intraventricularly with bufotenin has suggested that this substance is at least as potent as its powerfully hallucinogenic 5-methoxy congener (unpublished results of D. Segal and A. J. M.).  相似文献   

15.
Dopamine Sulfoconjugation in the Rat Brain: Regulation by Monoamine Oxidase   总被引:2,自引:2,他引:0  
An increase of free 3,4-dihydroxyphenylethylamine (DA, dopamine) in the rat brain such as is found following 3,4-dihydroxyphenylalanine (L-DOPA) administration or an intraventricular injection of free dopamine did not result in DA sulfate formation, despite the presence of phenolsulfotransferase activity in various regions of the brain and the high affinity of DA for this enzyme. However, when rats were pretreated with pargyline, a monoamine oxidase inhibitor, the same treatment with L-DOPA or free DA led to active synthesis of DA sulfate. The increase in DA sulfate was significantly correlated with the degree of monoamine oxidase inhibition and directly proportional to free DA concentrations in the hypothalamus (r = 0.86), striatum (r = 0.54), and brainstem (r = 0.89). The highest ratio of DA sulfate to free DA was found in the hypothalamus, suggesting that sulfoconjugation is most active in this region. Prior treatment of rats with 6-hydroxydopamine did not decrease DA sulfate concentrations, indicating that sulfoconjugation occurs most likely in extraneuronal tissues not destroyed by the neurotoxin. The results are compatible with the notion that phenolsulfotransferase may be highly compartmentalized and that inhibition of monoamine oxidase allows the newly generated free DA to become accessible to the sulfoconjugating enzyme, resulting in increase in DA sulfation.  相似文献   

16.
A novel series of 2-pyrazoline and hydrazone derivatives were synthesized and investigated for their human monoamine oxidase (hMAO) inhibitory activity. All compounds inhibited the hMAO isoforms (MAO-A or MAO-B) competitively and reversibly. With the exception of 5i, which was a selective MAO-B inhibitor, all derivatives inhibited hMAO-A potently and selectively. According to the experimental Ki values, compounds 6e and 6h exhibited the highest inhibitory activity towards the hMAO-A, whereas compound 5j, which carries a bromine atom at R4 of the A ring of the pyrazoline, appeared to be the most selective MAO-A inhibitor. Tested compounds were docked computationally into the active site of the hMAO-A and hMAO-B isozymes. The computationally obtained results were in good agreement with the corresponding experimental values.  相似文献   

17.
A simultaneous radioenzymatic assay for catecholamines and DOPAC has been developed. 3H-Methoxy amines and 3H-homovanillic acid formed in the presence of 3H-S-adenosyl-methionine and catechol-O-methyl transferase were separated by organic solvent extraction and chromatography. Chlorpromazine, haloperidol, but not sulpiride increased the DOPAC content in the striatum, without affecting the DOPAC level in the median eminence. γ-Butyrolactone increased the dopamine content also only in the striatum. The monoamine oxidase inhibitor pargyline decreased the DOPAC level in both areas examined. All the substances employed increased plasma prolactin level. The biochemical responses of nigrostriatal and tubero-infundibular dopaminergic neurons may not be analogous.  相似文献   

18.
The neuroprotective action of hybrid structures based on fullerene C60 with attached proline amino acid has been studied. Hybrid structures contained natural antioxidant carnosine or addends with one or two nitrate groups. It has been shown that all studied compounds had antioxidant activity and decreased the concentration of malondialdehyde in homogenates of the rat brain. Compound I, which contained the antioxidant carnosine, has been found to be the most effective antioxidant. All compounds except IV and V inhibited the activity of monoamine oxidase B, while compounds I–IV increased the activity of monoamine oxidase A. All investigated compounds inhibited glutamate-induced Ca2+ uptake into synaptosomes of the rat brain cortex. Compound III, containing two nitrate groups, has been found to be the most effective inhibitor. This compound caused a significant increase of the currents of AMPA receptors (AMPA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid).  相似文献   

19.
Quipazine, 2-(1-piperazinyl)-quinoline, is a drug that has been reported to stimulate serotonin receptors in brain. We therefore studied the effect of quipazine on several parameters of serotonin metabolism in rat brain. Quipazine caused a slight, dose-related elevation of serotonin levels and decrease in 5-hydroxyindoleacetic acid levels for 2–4 hrs after it was administered. The decrease in 5-hydroxyindoleacetic acid levels was probably due primarily to a depression of 5-hydroxyindole synthesis, since quipazine also decreased the rate of 5-hydroxytryptophan accumulation after NSD 1015, the rate of serotonin decline after α-propyldopacetamide, and the rate of 5-hydroxyindoleacetic acid accumulation after probenecid. The elevation of serotonin was probably due to weak inhibition of monoamine oxidase. Quipazine reversibly inhibited the oxidation of serotonin by rat brain monoamine oxidase invitro and protected against the irreversible inactivation of the enzyme invivo. Quipazine also was a potent inhibitor of serotonin uptake into brain synaptosomes invitro and attained concentrations in brain higher than the invitro IC50. However, quipazine did not prevent the depletion of brain serotonin by p-chloroamphetamine invivo. In addition to stimulating serotonin receptors in brain, quipazine may inhibit monoamine oxidase and serotonin reuptake invivo.  相似文献   

20.
(E)-beta-Fluoromethylene-m-tyrosine (FMMT) is a dual-enzyme-activated inhibitor of monoamine oxidase (MAO). The compound is not an inhibitor per se but is decarboxylated by aromatic L-amino acid decarboxylase (AADC) to yield a potent enzyme-activated irreversible inhibitor of MAO, (E)-beta-fluoromethylene-m-tyramine, which shows some selectivity for inhibition of MAO type A. Decarboxylation of FMMT was demonstrated in vitro using hog kidney AADC and in vivo in rats by the ability of alpha-monofluoromethyldopa (MFMD), a potent inhibitor of AADC, to prevent MAO inhibition produced by FMMT. In isolated synaptosomes, FMMT was decarboxylated by AADC, and, furthermore, the compound was actively transported into these isolated nerve endings. An active transport into the CNS has also been demonstrated in vivo by performing competition experiments with leucine. To demonstrate that FMMT is preferentially decarboxylated within monoamine nerves of the CNS, the nigrostriatal 3,4-dihydroxyphenylethylamine (dopamine) pathway of rats was unilaterally lesioned with 6-hydroxydopamine or infused with MFMD. Under these conditions, MAO inhibition produced by orally administered FMMT in the striatum ipsilateral to the lesion or infusion was markedly attenuated. Combination of FMMT with an inhibitor of extracerebral AADC, such as carbidopa, protected peripheral organs against the MAO inhibitory effects and concomitantly enhanced MAO inhibition in the CNS. Such combinations had a greatly reduced propensity to augment the cardiovascular effects of intraduodenally administered tyramine, when compared with FMMT given alone or with clorgyline, a selective inhibitor of MAO type A. The results obtained with FMMT suggest the possibility of achieving selective inhibition of MAO within monoamine nerves of the CNS and, further, suggest that combination of FMMT with an inhibitor of extracerebral AADC will reduce the propensity of this inhibitor to produce adverse interactions with tyramine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号