首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated enterocytes from rat small intestine were characterized for their specific binding of epidermal growth factor (EGF). Intestinal epithelial cells were isolated at 4 degrees C to minimize the loss of receptor sites during the isolation procedure. 125I-labelled EGF binding to enterocytes from adult rats was found to be specific, saturable, temperature dependent and trypsin sensitive. Binding performed in the presence of a lysosomotropic agent (NH4Cl) increased the time required to reach maximal binding at 25 degrees C. NH4Cl had no significant effect on the time-course of EGF binding at 4 degrees C and 37 degrees C. A Scatchard plot showed a curvilinear relationship indicating that EGF binds to enterocytes with more than one binding site. Developmentally, enterocytes from fetuses and pups showed characteristic temperature dependence and trypsin sensitivity, but with different levels of binding to EGF. Specific EGF binding was demonstrably higher in enterocytes from small intestine of term fetuses. EGF binding to isolated enterocytes declined rapidly after birth, and the level stayed fairly constant thereafter. Pretreatment of enterocytes from fetal intestine with mature rat milk led to a dose-dependent decrease in EGF binding. These results suggest the presence of endogenous milk factors that modify EGF binding and account for, at least partly, the observed rapid decrease of EGF binding after birth.  相似文献   

2.
In the present study, we show for the first time the presence of calcitriol-specific binding sites in hypertonic extracts of cells isolated from human fetal small intestine and colon from 13-21 weeks of gestation. Woolf plot analysis of the binding characteristics revealed the presence of a single class of high affinity receptors. The presence of specific receptors for calcitriol in fetal intestine and colon opens interesting possibilities as to the role of this hormone in human gut development.  相似文献   

3.
The developmental pattern of the bovine fetal large intestine was studied with particular reference to the appearance and decline of the intestinal villi during the fetal period. In the bovine large intestine, the first rudimentary villus and goblet cells were seen in the rectum in a fetus estimated to be 3 months old. By 5-6 months, the goblet cells, absorptive cells in the intestinal crypts, and vacuolated cells in the villi were present along all segments of the large intestine. By 8-9 months, the villi have disappeared from the colon and rectum, epithelial cells no longer contain vacuoles, and absorptive and goblet cell populations are emerging from the crypts. These histological results suggest that development in the bovine large intestine follows a recto-cecal gradient and the most distinct turning point during the fetal period is the first disappearance of fetal villi in the rectum of fetuses estimated to be 7 months old. After this stage, the mucous membrane of the colon and rectum matured rapidly before birth. In contrast, the cecum may seem to require further development in perinatal life.  相似文献   

4.
The intestinal epithelium forms a physical barrier to limit access of enteric microbes to the host and contributes to innate host defense by producing effector molecules against luminal microbes. To further define the role of the intestinal epithelium in antimicrobial host defense, we analyzed the expression, regulation, and production of two antimicrobial peptides, human defensins hBD-1 and hBD-2, by human intestinal epithelial cells in vitro and in vivo. The human colon epithelial cell lines HT-29 and Caco-2 constitutively express hBD-1 mRNA and protein but not hBD-2. However, hBD-2 expression is rapidly induced by IL-1alpha stimulation or infection of those cells with enteroinvasive bacteria. Moreover, hBD-2 functions as a NF-kappaB target gene in the intestinal epithelium as blocking NF-kappaB activation inhibits the up-regulated expression of hBD-2 in response to IL-1alpha stimulation or bacterial infection. Caco-2 cells produce two hBD-1 isoforms and a hBD-2 peptide larger in size than previously described hBD-2 isoforms. Paralleling the in vitro findings, human fetal intestinal xenografts constitutively express hBD-1, but not hBD-2, and hBD-2 expression, but not hBD-1, is up-regulated in xenografts infected intraluminally with Salmonella. hBD-1 is expressed by the epithelium of normal human colon and small intestine, with a similar pattern of expression in inflamed colon. In contrast, there is little hBD-2 expression by the epithelium of normal colon, but abundant hBD-2 expression by the epithelium of inflamed colon. hBD-1 and hBD-2 may be integral components of epithelial innate immunity in the intestine, with each occupying a distinct functional niche in intestinal mucosal defense.  相似文献   

5.
6.
Explants of small intestinal tissue have been cultured from fetal and young rats (from 13-day fetuses to 3-week-old rats). Growth of morphologically typical epithelial cells was obtained from explants of tissue from 14–20 day fetuses. Optimal growth was obtained using tissue from 17-day fetuses with outgrowth from the explant being observed 1-day after explant. Eighty per cent of explants developed epithelial growth by 11 days in culture. Initially, the epithelial outgrowth showed no morphological evidence of differentiation but after 5–10 days in culture differentiation into goblet or elongated cells with alkaline phosphatase activity occurred. Cells with brush borders and goblet cells were identified using electron microscopy. No differentiation occurred if the explant was removed even though growth continued.It was very difficult to culture tissue from fetuses older than 20 days' gestation, and when small intestine of 18–20-day fetuses was divided into two parts (proximal and distal) and cultured separately, growth of epithelial cells from explants of the proximal segment was less successful than that of the distal segment, indicating that the growth ability of these epithelial cells in vitro was closely related to tissue maturation in vivo. In contrast to the apparent relationship between fetal age and successful growth of intestinal epithelial cells, squamous epithelial cells of the esophagus could be grown from explants of 14-day fetus through newborn and 3-week-old rats.  相似文献   

7.
The regulation of intestinal cell proliferation, migration, and differentiation has been the subject of numerous studies. However, in human, progress in this field has been traditionally hampered by the lack of normal epithelial cell models. The aim of the present study was to define conditions in order to isolate, and more importantly to grow in a continuous manner, human small intestinal epithelial cells. A number of mechanical and/or enzymatic dissociation methods have been tested to isolate viable epithelial cells from the fetal small intestine. Cultured cells were characterized by indirect immunofluorescence and Western blot analysis. It was found that the use of thermolysin (50 μg/ml, 2–3 h at 37°C) can be advantageously applied to the isolation of viable epithelial cells free from contaminating fibroblasts when obtained from the 17- to 19-week fetal ileum. Furthermore, this procedure allowed the generation of continuously growing human intestinal epithelial cell cultures, which retain the ability to express specific cytokeratins as well as intestinal cell markers over a number of passages. This study shows that normal epithelial cell cultures can be relatively easily and reproducibly generated from the human fetal small intestine.  相似文献   

8.
125I-monitor peptide binding was performed using frozen sections of the rat liver and gut and visualized using autoradiography. Saturable binding was observed in unidentified single cells in the liver and in the mucosa of the small intestine. Epidermal growth factor (EGF) and GTPgammaS did not inhibit 125I-monitor peptide binding indicating that the binding sites are not EGF receptors or G protein-coupled receptors. The liver binding site exhibited an affinity 3.7-4.4-fold higher than those in the small intestine. It has been established that intraluminal monitor peptide releases cholecystokinin from the small intestine. The present results indicate that monitor peptide may also have liver associated functions.  相似文献   

9.
Hyaluronic acid (HA), a component of the extracellular matrix, affects gastrointestinal epithelial proliferation in injury models, but its role in normal growth is unknown. We sought to determine the effects of exogenous HA on intestinal and colonic growth by intraperitoneal injection of HA twice a week into C57BL/6 mice from 3 to 8 wk of age. Similarly, to determine the effects of endogenous HA on intestinal and colonic growth, we administered PEP-1, a peptide that blocks the binding of HA to its receptors, on the same schedule. In mice treated with exogenous HA, villus height and crypt depth in the intestine, crypt depth in the colon, and epithelial proliferation in the intestine and colon were increased. In mice treated with PEP-1, intestinal and colonic length were markedly decreased and crypt depth and villus height in the intestine, crypt depth in the colon, and epithelial proliferation in the intestine and colon were decreased. Administration of HA was associated with increased levels of EGF (intestine) and IGF-I (colon), whereas administration of PEP-1 was associated with decreased levels of IGF-I (intestine) and epiregulin (colon). Exogenous HA increases intestinal and colonic epithelial proliferation, resulting in hyperplasia. Blocking the binding of endogenous HA to its receptors results in decreased intestinal and colonic length and a mucosal picture of hypoplasia, suggesting that endogenous HA contributes to the regulation of normal intestinal and colonic growth.  相似文献   

10.
Suppressors of cytokine signaling (SOCS) typically limit cytokine receptor signaling via the JAK-STAT pathway. Considerable evidence demonstrates that SOCS2 limits growth hormone (GH) action on body and organ growth. Biochemical evidence that SOCS2 binds to the IGF-I receptor (IGF-IR) supports the novel possibility that SOCS2 limits IGF-I action. The current study tested the hypothesis that SOCS2 normally limits basal or IGF-I-induced intestinal growth and limits IGF-IR signaling in intestinal epithelial cells. Intestinal growth was assessed in mice homozygous for SOCS2 gene deletion (SOCS2 null) and wild-type (WT) littermates at different ages and in response to infused IGF-I or vehicle or EGF and vehicle. The effects of SOCS2 on IGF-IR signaling were examined in ex vivo cultures of SOCS2 null and WT intestine and Caco-2 cells. Compared with WT, SOCS2 null mice showed significantly enhanced small intestine and colon growth, mucosal mass, and crypt cell proliferation and decreases in radiation-induced crypt apoptosis in jejunum. SOCS2 null mice showed significantly greater growth responses to IGF-I in small intestine and colon. IGF-I-stimulated activation of IGF-IR and downstream signaling intermediates were enhanced in the intestine of SOCS2 null mice and were decreased by SOCS2 overexpression in Caco-2 cells. SOCS2 bound directly to the endogenous IGF-IR in Caco-2 cells. The intestine of SOCS2 null mice also showed enhanced growth responses to infused EGF. We conclude that SOCS2 normally limits basal and IGF-I- and EGF-induced intestinal growth in vivo and has novel inhibitory effects on the IGF-IR tyrosine kinase pathway in intestinal epithelial cells.  相似文献   

11.
12.
Development of fetal rat intestine in organ and monolayer culture   总被引:12,自引:0,他引:12  
《The Journal of cell biology》1985,100(5):1611-1622
Maturation and differentiation of intestinal epithelial cells was demonstrated in segments of fetal rat small intestine, maintained for more than a month in suspension organ culture, by ultrastructural, biochemical, and immunological criteria. Over a 5-7 d period, fragments of fetal intestine evolved into globular structures covered with a single columnar epithelium ultrastructurally similar to suckling villus cells. Loose mesenchymal cells, cellular debris, and collagen were present inside the structures. After 6 d in culture, goblet cells, not present in the fetal intestine at day 18, were numerous and well developed. Intestinal endocrine cells were also observed. Immunofluorescence studies employing monoclonal antibodies specific for villus and crypt cells in vivo, and various enzyme assays, have demonstrated a level of differentiation and maturation of the cultured epithelial cells similar but not identical to that of suckling intestinal mucosa in vivo. Crypts and crypt cell markers were not observed in the the cultures. Addition of glucocorticoids to the culture medium resulted in the induction of sucrase-isomaltase but failed to promote most of the functional changes characteristic of the intestinal epithelium at weaning in vivo. Epithelial cells were identified in explants derived from the organ cultures by their specific expression of intestinal cytokeratin. Differentiation-specific markers, present in the epithelial cells in primary cultures, were lost upon selection and subculturing of pure epithelial cell populations. These results suggest a requirement for mesenchymal and/or extracellular matrix components in the maintenance of the differentiated state of the epithelial cells. The fetal intestinal organ cultures described here present significant advantages over traditional organ and monolayer culture techniques for the study of the cellular and molecular interactions involved in the development and differentiation of the intestinal epithelium.  相似文献   

13.
Uptake of energy into cells and its allocation to individual cellular compartments by transporters are essential for tissue homeostasis. The present study gives an analysis of MCT1 expression and its cellular occurrence in the porcine intestine. Tissue portions from duodenum, jejunum, ileum, colon ascendens, colon transversum and colon descendens were collected and prepared for immunohistochemistry, Western blot and real time RT-PCR. A 169bp porcine MCT1 cDNA fragment was amplified and published. MCT1 mRNA expression in the large intestine was 20 fold higher compared to the small intestine. Western blot detected a single protein band of 41kDa at a much higher amount of MCT1 protein in the large intestine vs. the small intestine. MCT1 protein was detected in mitochondrial fractions of the large but not the small intestine. Immunohistochemistry in the small intestine showed that immune cells in the lamina propria and in the lymphoid follicles primarily expressed MCT1 while in the colon epithelial cells were the main source of MCT1. In summary, cellular expression of MCT1 differs between epithelial cells in the colon and small intestine. A possible role of MCT1 for uptake of butyrate into immune cells and the overall role of MCT1 for intestinal immune cell function remains elusive.  相似文献   

14.
Summary Large intestines from 30 fetuses with crown-rump lengths ranging from 26 to 180 mm have been studied histochemically as to their epithelial content of lipids. These lipids have been localized intracellularly and basally in the cells, and comparative studies of the colon and the small intestine have demonstrated that there are considerable amounts of lipids in the colon as compared with the small intestine.It is concluded that the main part of the lipids consist of saturated and unsaturated constituents.The possible explanations of the lipids as absorbed material, biological active material synthetized de novo or as material involved in the metabolism of fetal surface cells are discussed.This work was supported by a grant from the Aid of the Crippled Children, New York.  相似文献   

15.
Epidermal growth factor (EGF), present in high concentrations in the milk of various species, is biologically active following oral administration to young animals. Although in vivo studies show gastrointestinal processing of dietary EGF during early postnatal development, the relative importance of luminal and mucosal digestion in such processing is undefined. To characterize the luminal metabolism of dietary EGF in the developing gastrointestinal tract, we incubated human recombinant 125I-EGF in vitro at 37 degrees with luminal fluid from the stomach and various segments of the small intestine of 12 day old suckling and 31 day old weanling rats and analyzed the resulting reaction products. The rate of EGF hydrolysis as determined by generation of acid soluble material was greater in weanling small intestine than in suckling, with maximal hydrolytic capacity observed in the mid-jejunum and ileum. Minimal hydrolysis was observed with stomach fluid from both age groups, and EGF retained its ability to elute as a single species on Sephadex G-25 columns and to bind to monospecific affinity columns and placental membrane receptors. Incubation with suckling small intestinal fluid produced little change in the chromatographic profile on Sephadex G-25, but a reduction in antibody and receptor binding was observed. In contrast, incubation with weanling small intestinal fluid yielded both a more pronounced loss of EGF-like material on G-25 columns and a greater reduction in receptor and antibody binding. We conclude that little luminal EGF degradation occurs in the rat stomach during the suckling and weanling periods, but that in the lumen of the small intestine breakdown increases during postnatal development.  相似文献   

16.
Specific receptors for bombesin/gastrin-releasing peptide, somatostatin, and EGF were investigated in 15 human colon cancer specimens. Eight of 15 clinical specimens (15%) of colon cancer showed the presence of somatostatin receptors. Octapeptide somatostatin analogs, RC-160 and RC-121, showed 10 times higher binding affinity for somatostatin receptors on colon cancer membranes than somatostatin. Analysis of 125I-Tyr4-bombesin binding data revealed the presence of specific binding sites in six (40%) specimens of human colon cancer. Scatchard analysis of 125I-labeled bombesin indicated a single class of receptors in three specimens with an apparent Kd value of 2.5 nM and two classes of receptors with high (Kd = 0.4 +/- 0.2 nM) and low affinity (Kd = 1.6 +/- 0.4 microM) in three other specimens. The 125I-Tyr4-bombesin binding capacities in the colon cancers for high affinity binding sites were from 6 to 228 fmol/mg protein and for low affinity binding sites 76 +/- 15 pmol/mg protein. None of the membrane preparations made from normal colonic mucosa specimens showed specific binding for 125I-Tyr4-bombesin. Five pseudononapeptide (psi 13-14) bombesin (6-14) antagonists, with different modifications at Positions 6 and 14, synthesized in our laboratory, inhibited the binding of 125I-Tyr4-bombesin in nanomolar concentrations. No correlation was found between the degree of differentiation and the presence of binding sites for somatostatin or bombesin. Specific binding of EGF was detected in 80% of colon cancer specimens. EGF binding capacity in colon cancer membranes was on average twice as high as in normal colon mucosa (50 +/- 21 vs 28 +/- 14 fmol/mg protein, respectively). Specific binding sites for somatostatin and EGF, but not bombesin, were also demonstrated in human colon cancer cell line HT-29. In HCT-116 colon cancer line only EGF receptors were found. These receptor findings and our in vivo studies on inhibition of colon cancer growth support the merit of continued evaluation of somatostatin analogs and bombesin/gastrin-releasing peptide antagonists in the management of colonic carcinoma.  相似文献   

17.
Mosaic analysis using the spf(ash)-heterozygous female mouse was performed to clarify the cell lineage and cell behavior during small intestinal development with special attention given to the villus and crypt formation. The spf(ash) mutation, located on the X-chromosome, causes ornithine transcarbamylase (OTC) deficiency, which leads to mosaic expression of this enzyme in the small intestine of the heterozygous female mouse. In the small intestine in heterozygous fetuses, very small patches, which were aggregates of OTC-positive cells or negative cells, with no definite orientation to the villus structures were observed. In the neonatal small intestine, the intervillus region (the presumptive crypts) was polyclonal, and the majority of crypts were comprised exclusively cells of either genotype in 2-week-old small intestine. These results suggest that extensive migration and cell mixing of small intestinal epithelial cells, which have no definite correlation with the villus formation, occur in fetal stages of development, and that the crypt morphogenesis commences after birth independently of the monoclonality of the epithelial cells. Our data with the mosaic mice also reconfirmed the monoclonality of the adult small intestinal crypts demonstrated in mouse aggregation chimeras.  相似文献   

18.
Specific binding sites for somatostatin have been identified in cytosolic fraction of both small and large intestinal mucosa. The stoichiometric data suggested the presence of two classes of binding sites in each part of the intestine. The binding capacity varied depending on the segment considered (rectum greater than duodenum = jejunum greater than ileum, caecum and colon). However, the affinities of the binding sites were similar throughout the whole intestinal mucosa, with the exception of rectum which showed higher Kd values. The binding sites were shown to be highly specific for somatostatin since neuropeptides such as vasoactive intestinal peptide, neurotensin, substance P and Leu-enkephalin did not show any effect upon somatostatin binding.  相似文献   

19.
IGF-I and IGF-II receptors are expressed in the small intestine of mammalian species, as are the genes to synthesize both peptides. IGF binding proteins are also expressed in the intestine. IGF-I and IGF-II mRNA are highest in fetal and newborn tissues and decrease with age. IGF-I mRNA is present in the adult small intestine, and is associated with the submucosal regions and crypt cells. IGF-I and IGF-II receptor binding to the small intestine is higher in newborn animals and decreases with age. Both receptors are more concentrated in the crypt than villus regions, but IGF-II binding is higher than IGF-I in all regions. IGF-I receptors are associated with the submucosal region of the small intestine, whereas IGF-II receptors are more abundant in the mucosal cells. Administration of IGF-I either orally or by osmotic pump generally has no affect on small intestinal weight or length, but does increase mucosal cellularity. LR3-IGF-I administration by osmotic pump affects the small intestine similarly to IGF-I, although with a higher potency. In the few studies in which IGF-II was administered, increased gut mass was observed in adult rats, but not newborn rats or pigs. Significant effects on mucosal expression of disaccharidases was achieved with either oral or subcutaneous IGF-I or oral IGF-II. Administration of IGF in models of intestinal hypertrophy and atrophy are also reviewed.  相似文献   

20.
To examine the multiple stages of lipoprotein packaging during development, we studied localization, ontogeny, and regulation of microsomal transfer protein (MTP), a crucial protein for lipid transport. With the use of immunofluorescence, MTP was identified in villus and crypt epithelial cells in different regions of human fetal intestine, including colon. Staining was detected as early as the 13th wk of gestation in all gut segments and was almost entirely confined to the columnar epithelial cells of the jejunum and colon. Unlike immunofluorescence, which provides qualitative but not quantitative information on MTP signal, enzymatic assays revealed a decreasing gradient from proximal small intestine to distal, as confirmed by immunoblot. Activity of MTP in small intestinal explants cultured for different incubation periods (0, 4, 8, and 24 h) peaked at 4 h but remained insensitive to different concentrations of oleic acid. Also, a trend toward increasing MTP activity was observed at 20-22 wk of gestation. Finally, in strong contrast to jejunal efficiency, colonic explants displayed impaired lipid production, apolipoprotein biogenesis, and lipoprotein assembly, in association with poor expression of MTP. These findings provide the first evidence that human fetal gut is able to express MTP and emphasize the distinct regional distribution, regulation by oleic acid, and ontogeny of MTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号