首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to their numerous endemic/sub‐endemic and rare plant species, rocky outcrops and cliffs, particularly those occurring at the timberline and forest/steppe ecotones of the Hyrcanian area, are considered as among the most important and fragile ecosystems in Iran. As a representative of such ecosystems, one of the last remnants of relatively undisturbed timberline and ecotone areas of the central Hyrcanian region was selected for phytogeographical, floristic and vegetation analyses. The flora and vegetation of rocky outcrops and crevices at altitudes of 2500–3000 m a.s.l. was surveyed by 40 relevés of 25 m2 surface area. A total of 215 vascular plants belonging to 55 families and 150 genera were identified in the different vegetation types. Hemicrytophytes (55.8%) were the dominant life form and Euro–Siberian/Irano–Turanian biregional plants (28.2%) were the most common chorotype at the study sites. A phytogeographical analysis indicated that Euro–Siberian elements (including Hyrcanian endemics) precede other uniregional chorotypes in the timberline and upper‐mountain parts of the central Hyrcanian area. The Caucasus, an important biodiversity hotspot close to Iran, has a considerable number of taxa in common with the Irano–Turanian floristic regions. Five vegetation types were identified using a modified TWINSPAN procedure and subsequently analysed by indirect gradient analysis applying both species‐related (species richness, life form and phytogeographical elements) and topographic/bedrocks features of the studied relevés. The analysis revealed that the vegetation of the area is mainly affected by altitude, heat index, northness, slope inclination and bedrock features.  相似文献   

2.
We hypothesized that associations among plant functional traits may differ within different ecological assemblages and plant communities. Association among plant traits including plant maximum height, seed weight, fruit type, pollination mode, mean leaf area, and leaf type were explored within life forms, plant strategy groups along with lowland and montane forest vegetation. In total, 83 sampling plots of 400 m2 were placed along a 2400 m altitudinal gradient in Hyrcanian forest. Importance‐values of species within vegetation types were used for weighting data and trait associations were explored using categorical principal component analysis. A G‐test and Fisher's exact test of independence were used to retest significance of the correlations. Different paired trait associations (association lines) including height–leaf, height–seed, height–pollination, leaf–seed, seed–fruit and fruit–pollination were observed and their ecological or physiological basis was discussed. Life forms, strategy types and vegetation types differed based on association lines. Some of the well‐known trade‐offs appear by increasing scale from ecological groups to vegetation types in Hyrcanian forest. The observed patterns of trait associations in Hyrcanian forest and several other ecosystems of the world call the generality of previously accepted trait correlations into question.  相似文献   

3.
Aim To assess the utility of indigenous habitat knowledge in studies of habitat diversity in Amazonia. Location Baniwa indigenous communities in Rio Içana, upper Rio Negro, Brazil. Methods Six campinarana vegetation types, recognized and named by a consensus of Baniwa indigenous informants according to salient indicator species, were studied in 15 widely distributed plots. Floristic composition (using Baniwa plant nomenclature only, after frustrated attempts to obtain botanical collection permits), quantitative measures of forest structure and GPS waypoints of the 4‐ha composite plot contours were registered, permitting their location on Landsat satellite images. Non‐metric multidimensional scaling (NMDS) ordination was carried out using pc‐ord software. Results The NMDS ordinations of the plot data revealed a clear gradient of floristic composition that was highly correlated with three quantitative measures of forest structure: basal area, canopy height and satellite reflectance. Main conclusions Baniwa‐defined forest types are excellent predictors of habitat diversity along the structural gradient comprising distinctive white‐sand campinarana vegetation types. Indigenous ecological knowledge, as revealed by satellite imagery and floristic analyses, proves to be a powerful and efficient shortcut to assessing habitat diversity, promoting dialogue between scientific and indigenous worldviews, and promoting joint study and conservation of biodiversity.  相似文献   

4.
Understanding the change in vegetation composition along elevational gradients is critical for species conservation in a changing world. We studied the species richness, tree height, and floristic composition of woody plants along an elevation gradient of protected habitats on the eastern slope of Mount Meru and analyzed how these vegetation variables are influenced by the interplay of temperature and precipitation. Vegetation data were collected on 44 plots systematically placed along five transects spanning an elevational gradient of 1600 to 3400 m a.s.l. We used ordinary linear models and multivariate analyses to test the effect of mean annual temperature and precipitation on woody plant species richness, tree height, and floristic composition. We found that species richness, mean tree height, and maximum tree height declined monotonically with elevation. Models that included only mean annual temperature as an explanatory variable were generally best supported to predict changes in species richness and tree height along the elevation gradient. We found significant changes in woody plant floristic composition with elevation, which were shaped by an interaction of mean annual temperature and precipitation. While plant communities consistently changed with temperature along the elevation gradient, levels of precipitation were more important for plant communities at lower than for those at higher elevations. Our study suggests that changes in temperature and precipitation regimes in the course of climate change will reshape elevational gradients of diversity, tree height, and correlated carbon storage in ecosystems, and the sequence of tree communities on East African mountains.  相似文献   

5.
The mesic Caspian (Hyrcanian) forest and ecotone communities provide a marked contrast to the arid and semiarid landscapes associated with most of the territory of Iran. To date, the ecological characteristics of these habitats, threatened and of conservation importance, have been little studied. Accordingly, ecological profiles of some important plant species of these communities have been assessed along two altitudinal gradients (300–2300 m a.s.l.). Vegetation and soils were sampled every 100 m in elevation, with the data subsequently analyzed using TWINSPAN and corrected frequency (CF) analyses. Relationships between soil variables (subdivided into three classes, the lowest, the middle and the upper third of all values) and herbaceous and shrub species (presence/absence data) were analyzed by the polythetic divisive classification method. 379 plant species and eleven soil variables – N, P, K, CaCO3, EC, pH, organic matter, C/N ratio and percentage of sand, clay and silt – were considered. The ecological profile method was used to evaluate the affinity and significance of associations between the probability of species’ occurrence and topsoil characteristics found by the polythetic method. Five vegetation groups were identified: two groups, with Acer campestre and Quercus macranthera in the tree layer and Veronica mazanderanae and Phuopsis stylosa as herbs, were restricted to forest-steppe ecotones and the upper mountain areas. Three groups, with Acer velutinum, Ruscus hyrcanus, Carpinus betulus, Danae racemosa, Fagus orientalis and Aruncus vulgaris as indicator species, occurred in the forest itself. Of the 42 plant species assessed as being of particular importance, 13 had significant relationships with eight soil factors. Thus, certain species, including endemic plant species of restricted distribution and conservation importance, can be used as indicators of particular soil conditions in the Hyrcanian forest area.  相似文献   

6.
7.
Kermavnar  Janez  Kutnar  Lado  Marinšek  Aleksander 《Plant Ecology》2022,223(2):229-242

Species- and trait-environment linkages in forest plant communities continue to be a frequent topic in ecological research. We studied the dependence of floristic and functional trait composition on environmental factors, namely local soil properties, overstory characteristics, climatic parameters and other abiotic and biotic variables. The study area comprised 50 monitoring plots across Slovenia, belonging to the EU ICP Forests monitoring network. Vegetation was surveyed in accordance with harmonized protocols, and environmental variables were either measured or estimated during vegetation sampling. Significant predictors of species composition were identified by canonical correspondence analysis. Correlations between plant traits, i.e. plant growth habit, life form, flowering features and CSR signature, were examined with fourth-corner analysis and linear regressions. Our results show that variation in floristic composition was mainly explained by climatic parameters (mean annual temperature, mean annual precipitation), soil properties (pH) and tree layer-dependent light conditions. Trait composition was most closely related with tree layer characteristics, such as shade-casting ability (SCA, a proxy for light availability in the understory layer), tree species richness and tree species composition. Amongst soil properties, total nitrogen content and soil texture (proportion of clay) were most frequently correlated with different species traits or trait states. The CSR signature of herb communities was associated with tree layer SCA, soil pH and mean annual temperature. The floristic composition of the studied herb-layer vegetation depended on temperature and precipitation, which are likely to be influenced by ongoing climate change (warming and drying). Trait composition exhibited significant links to tree layer characteristics and soil conditions, which are in turn directly modified by forest management interventions.

  相似文献   

8.
Effective vegetation classification schemes identify the processes determining species assemblages and support the management of protected areas. They can also provide a framework for ecological research. In the tropics, elevation‐based classifications dominate over alternatives such as river catchments. Given the existence of floristic data for many localities, we ask how useful floristic data are for developing classification schemes in species‐rich tropical landscapes and whether floristic data provide support for classification by river catchment. We analyzed the distribution of vascular plant species within 141 plots across an elevation gradient of 130 to 3200 m asl within La Amistad National Park. We tested the hypothesis that river catchment, combined with elevation, explains much of the variation in species composition. We found that annual mean temperature, elevation, and river catchment variables best explained the variation within local species communities. However, only plots in high‐elevation oak forest and Páramo were distinct from those in low‐ and mid‐elevation zones. Beta diversity did not significantly differ in plots grouped by elevation zones, except for low‐elevation forest, although it did differ between river catchments. None of the analyses identified discrete vegetation assemblages within mid‐elevation (700–2600 m asl) plots. Our analysis supports the hypothesis that river catchment can be an alternative means for classifying tropical forest assemblages in conservation settings.  相似文献   

9.
Aim Our objectives were to compare understorey plant community structure among forest types, and to test hypotheses relating understorey community structure within lower montane and subalpine forests to fire history, forest structure, fuel loads and topography. Location Forests on the North Rim of Grand Canyon National Park, Arizona, USA. Methods We measured understorey (< 1.4 m) plant community structure in 0.1‐ha plots. We examined differences in univariate response variables among forest types, used permutational manova to assess compositional differences between forest types, and used indicator species analysis to identify species driving the differences between forest types. We then compiled sets of proposed models for predicting plant community structure, and used Akaike's information criterion (AICC) to determine the support for each model. Model averaging was used to make multi‐model inferences if no single model was supported. Results Within the lower montane zone, pine–oak forests had greater understorey plant cover, richness and diversity than pure stands of ponderosa pine (Pinus ponderosa P. & C. Lawson var. scopulorum Engelm.). Plant cover was negatively related to time since fire and to ponderosa pine basal area, and was highest on northern slopes and where Gambel oak (Quercus gambelii Nutt.) was present. Species richness was negatively related to time since fire and to ponderosa pine basal area, and was highest on southern slopes and where Gambel oak was present. Annual forb species richness was negatively related to time since fire. Community composition was related to time since fire, pine and oak basal area, and topography. Within subalpine forests, plant cover was negatively related to subalpine fir basal area and amounts of coarse woody debris (CWD), and positively related to Engelmann spruce basal area. Species richness was negatively related to subalpine fir basal area and amounts of CWD, was positively related to Engelmann spruce basal area, and was highest on southern slopes. Community composition was related to spruce, fir and aspen basal areas, amounts of CWD, and topography. Main conclusions In montane forests, low‐intensity surface fire is an important ecological process that maintains understorey communities within the range of natural variability and appears to promote landscape heterogeneity. The presence of Gambel oak was positively associated with high floristic diversity. Therefore management that encourages lightning‐initiated wildfires and Gambel oak production may promote floristic diversity. In subalpine forests, warm southern slopes and areas with low amounts of subalpine fir and CWD were positively associated with high floristic diversity. Therefore the reduction of CWD and forest densities through managed wildfire may promote floristic diversity, although fire use in subalpine forests is inherently more difficult due to intense fire behaviour in dense spruce–fir forests.  相似文献   

10.
Question: Species diversity is commonly expressed as the number of species present in an area, but this unique value assumes that all species contribute equally to the area's biodiversity. Can taxonomic diversity be used as a complementary measure for species richness in order to assess plant biodiversity in remnants of primary forest and patches of secondary vegetation? Location: Veracruz, Mexico. Methods: Using data from six sampling transects of each vegetation type in an elevation gradient (400‐900 m a.s.l.), we compare the point, mean and cumulative floristic diversity of primary forest and secondary vegetation in a tropical deciduous landscape, using species richness and two measures of taxonomic diversity: average taxonomic distinctness (Δ+) and variation in taxonomic distinctness (Λ+). We performed a randomization test to detect differences in the observed taxonomic diversity, from the expected values derived from the species pool of each vegetation type. Results: We found that the species of secondary vegetation are more closely related at low taxonomic levels (lower Δ+ value) than the species of primary forest remnants. Also, in secondary vegetation the distribution of species is uneven among the taxonomic levels and units (high Λ+ value). These patterns are consistent for point, mean and cumulative taxonomic diversity. Families Asteraceae, Euphorbiaceae, Fabaceae and Poaceae are over‐represented, while families Bromeliaceae, Cactaceae, Orchidaceae and Pteridaceae are under‐represented in secondary vegetation. Conclusions: Although in a previous paper we concluded that secondary vegetation is more alpha‐diverse than primary forest (in terms of both cumulative and mean species richness), and beta‐diversity between vegetation types is notoriously high, we now provide a wider view by highlighting the importance of taxonomic diversity in primary forest remnants. Our data indicate that to measure biodiversity accurately, we should seek to capture its different facets. This will allow us to make conservation recommendations based on a broader view, and not on a single dimension.  相似文献   

11.
Tree species richness changes along elevation gradients in response to underlying environmental conditions. Our hypothesis was that richness is associated with climatic variables and decreases with elevation. The objective was to identify trends in species, genus and family richness, diversity and vegetation structure in relation to climate variables along an elevation gradient with successive types of forest in Veracruz, Mexico. Trees were identified and measured in 0.1 ha at 15 sites located from 140 to 4000 m a.s.l. Generalized linear models were used to fit richness, diversity, basal area and density as a function of elevation; the best model was selected using Akaike’s Information Criterion. Multivariate analyses were used to explore climatic variables associated to composition of groups of sites along the gradient. Along the entire elevation gradient, species, genus and family richness decreased unimodally, and diversity decreased monotonically. Richness was positively correlated with temperature but not with precipitation. Basal area increased monotonically and highest basal area was associated with high humidity and certain tree species (Quercus and Abies). Ordinations indicated three groups of sites: lower elevation dry forest associated with temperature seasonality, mid-elevation cloud forest associated with precipitation-related variables, and coniferous forest at the top of the gradient associated with elevation. Our study shows that different plant communities are associated with certain climatic conditions and harbour different tree species, genera and families. The results support the hypothesis that species richness is associated with climate, and decreases with elevation.  相似文献   

12.
13.
香港长洲岛野生植物物种多样性与植被的研究   总被引:1,自引:0,他引:1  
长洲岛共有野生维管植物237种,隶属于73科184属.植被类型以次生常绿阔叶林为主,其次为灌丛群落.植物区系以热带亚热带植物地理成分占优势,热带性质明显.该岛的植物区系与邻近岛屿植物区系具有极大的相似性,在香港植物区系组成中占有一定地位.由于人为活动和外来植物的影响,其植物多样性及植被的保护应引起注意.  相似文献   

14.
The Paraguayan territory and region, in the centre of South America, is a huge transition area with a succession of various vegetation types. However, this area has received little attention from researchers, with few works published on its flora and its delimitations. We aimed to identify the most important environmental driving forces and delimit floristic patterns in this region, since understanding the forces that drive floristic variations in this ecotonal region could help comprehend the distribution of vegetation not only in this region but throughout South America. We obtained 1234 tree species occurrence records, 205 geographic coordinates and 23 environmental variables and altitude from the ‘NeoTropTree’ database and verified the influence and contribution of environmental factors through variance partition. We tested the floristic consistency of the different vegetation types using dendrogram, indicator species and ordination analyses. We also constructed multiple linear models to check the correlation between species distribution and environmental variables. We found eight consistent vegetation types. The spatial variables coupled with environmental variables were more important than individual environmental or spatial variables. Among the environmental variables, the aridity index was the most important. Despite the importance of spatial factors, due to environmental heterogeneity, we found a gradient related to climate and edaphic variables related to tree flora. The results confirm that the Paraguayan territory and region can be considered to be a diversified and important ecotone area in South America with respect to tree flora.  相似文献   

15.
Conservation planning in the face of global change is still in its infancy. A suggested approach is to incorporate environmental gradients into conservation planning as they reflect the ecological and evolutionary processes generating and maintaining diversity. Our study provides a framework to identify the dominant environmental gradients determining floristic composition and pattern. Nonmetric multidimensional scaling was used on 2155 sampling plots in savanna and grassland habitat located across the province of KwaZulu‐Natal, South Africa (94 697 km2), a floristically rich region having steep environmental gradients, to determine the dominant gradients. Hierarchical cluster analysis was used to group similar plots which were then used in a Classification and Regression Tree analysis to determine the environmental delimiters of the identified vegetation clusters. Temperature‐related variables were the strongest delimiters of floristic composition across the province, in particular mean annual temperature. Frost duration was the primary variable in the Classification and Regression Tree analysis with important implications for savanna/grassland dynamics. Soil properties (base, pH status) and moisture variables accounted for most of the variation for the second and third axes of floristic variation. Given that climatic and edaphic variables were well correlated with floristic composition, it is anticipated that a changing climate will have a marked influence on floristic composition. We predict warmer temperatures may facilitate the spread of frost sensitive savanna species into previously cooler, grassland areas. Species associated with specific soil types will not easily be able to move up the altitudinal gradient to cooler climes because geology is aligned in an approximately north‐south direction compared with increasing altitude from east‐west. Future conservation planning should take cognisance of these gradients which are surrogates for ecological and evolutionary processes promoting persistence.  相似文献   

16.
Spatial heterogeneity in the plant species composition of tropical forests is expected to influence animal species abundance and composition because vegetation constitutes the primary habitat feature for forest animals. Floristic variation is tied to variation in soils, so edaphic properties should ultimately influence animal species composition as well. The study of covariation in floristic and faunistic turnover has been hindered by the difficulty of completing coordinated surveys in hyperdiverse tropical communities, but this can be overcome with the use of a few plant taxa that function as surrogates for general floristic turnover. We used avian and plant transect surveys and soil sampling in a western Amazonian upland (terra firme) forest landscape to test whether spatial variation in bird community composition is associated with floristic turnover and corresponding edaphic gradients. Partial Mantel tests and Non‐metric Multidimensional Scaling showed floristic distinctiveness between two forest types closely associated with differences in soil cation concentrations, and differences in both floristic composition and cation concentrations were further linked to compositional differences in avian species, independent of geographic distances among sites. Ten percent of bird species included in Indicator Species Analyses showed significant associations with one of the two forest types. The upland forest types that we sampled, each corresponding to a different geological formation, are intermediate relative to edaphically extreme environments in the region. Models of avian diversification should take into account this environmental heterogeneity, as should conservation planning approaches that aim to represent faunal diversity. Abstract in Spanish is available in the online version of this article.  相似文献   

17.
Question: Are long‐unburnt patches of eucalypt forest important for maintaining floristic diversity? Location: Eucalyptus forests of southeastern New South Wales, Australia. Methods: Data from 976 sites representing a range of fire history from three major vegetation formations – shrubby dry sclerophyll forest (SF), grassy dry SF and wet SF – were analysed. Generalized linear models were used to examine changes in species richness with increasing time since wildfire and analysis of similarities to examine changes in community composition. Chi‐squared tests were conducted to examine the distribution of individual species across four time since fire categories. Results: Plant species relationships to fire varied between the three formations. Shrubby dry SF supported lower plant species richness with increasing time since wildfire and this was associated with shifts in community composition. Grassy dry SF showed significant shifts in community composition and species richness in relation to time, with a peak in plant species richness 20–30 yr post fire (either prescribed fire or wildfire). Wet SF increased in species richness until 10–20 yr post wildfire then displayed a general declining trend. Species richness in each vegetation type was not related to the fire frequencies and fire intervals observed in this study. Conclusions: Long‐unburnt (30–50 yr post wildfire) forests appeared to play a minor role in the maintenance of plant species diversity in dry forest systems, although this was more significant in wet forests. Maintenance of a range of fire ages within each vegetation formation will assist in maintaining floristic diversity within regions.  相似文献   

18.
The ancient landscape of the South - West Australian Floristic Region (SWAFR) is characterized by exceptional floristic diversity, attributed to a complex mosaic of nutrient - impoverished soils. Between - soil type differences in nutrient availability are expected to affect floristic assemblage patterns in the SWAFR. We compared patterns of floristic diversity between open - forest samples from three soil types in the high - rainfall zone of the SWAFR. The importance of environmental and spatial factors for species compositional turnover within soil types were evaluated within canonical correspondence analyses using variation partitioning. Patterns of phylogenetic diversity and dispersion were contrasted between soil types and related to differences in soil nutrient availability. Between - quadrat shared phylogenetic branch length for individual life form categories was correlated with explanatory variables using Mantel tests. Species and phylogenetic diversity increased with a decline in soil nutrients and basal area. Nutrient - poorer soils were differentiated by higher species density and phylogenetic diversity, and larger phylogenetic distances between species. Species turnover was best explained by environmental factors when soil nutrient concentrations and basal area were low. Coastal and inland quadrats from the most fertile soil type were distinguished by significantly differing patterns of phylogenetic diversity. Inland quadrats were characterized by strong relationships between phylogenetic diversity and environment, while phylogenetic patterns remained largely unaccounted for by explanatory variables within coastal quadrats. Phylogenetic diversity was more strongly related with environment within upland landform types for nutrient-poor soils. We highlight the complex relationships between climatic and edaphic factors within the SWAFR, and propose that the occurrence of refugial habitat for plant phylogenetic diversity is dynamically linked with these interactions. Climate change susceptibility was estimated to be especially high for inland locations within the high - rainfall zone. Despite the strong relationship between floristic diversity and soil fertility, holistic conservation approaches are required to conserve the mosaic of soil types regardless of soil nutrient status.  相似文献   

19.
Little is known about the soil seed bank and the influence of plant communities on the interaction between the seed bank and aboveground vegetation in the Hyrcanian temperate deciduous forest. We surveyed species composition and diversity of the persistent soil seed bank and the aboveground vegetation in six community types in old-growth Hyrcanian Box tree (Buxus hyrcana) stands in northern Iran. Fifty-two species with an average of 3,808 seeds/spores m−2 germinated; forbs accounted for 64% of the seed bank flora. Thirty-four species in the aboveground vegetation were not presented in the seed bank, 32 species in the seed bank were not found in the vegetation, and 20 species were in both. The dominant tree species were Diospyros lotus and Alnus subcordata with an average of 17 and 4.6 seeds m−2, respectively. Our results suggest that (1) vernal geophytes and shade-tolerant perennials are not incorporated in the seed bank, (2) early successional species are well represented in the seed bank, (3) plant community type has significant impacts on seed bank densities, and seed bank richness and diversity were significantly related to presence/absence of Box tree in the aboveground vegetation. The persistent seed bank contained species that potentially have a negative impact on the regeneration of forests, thus forest managers should retain old-growth Hyrcanian Box tree stands to conserve disturbance-sensitive indicator forest species.  相似文献   

20.

Questions

Water availability is known to be a first‐order driver of plant diversity; yet water also affects fire regimes and soil fertility, which, in turn, affect plant diversity. We examined how precipitation, fire and soil properties jointly determine woody plant diversity. Specifically, we asked how woody plant diversity varies along a sharp precipitation gradient (about 600–1,800 mm mean annual precipitation [MAP ]within a ~45‐km distance) exhibiting considerable variation in long‐term fire burn frequency and soil fertility, in a southern Indian seasonally dry tropical forest (SDTF ) landscape.

Location

Mudumalai, Western Ghats, India.

Methods

Woody plants ≥1‐cm DBH were enumerated in 19 1‐ha permanent plots spanning a range of tropical vegetation types from dry thorn forest, through dry and moist deciduous forest to semi‐evergreen forest. Burn frequencies were derived from annual fire maps. Six measures of surface soil properties – total exchangeable bases (Ca + Mg + K), organic carbon (OC ), total N, pH , plant available P and micronutrients (Fe + Cu + Zn + Mn) were used in the analyses. Five measures of diversity – species richness, Shannon diversity, the rarefied/extrapolated versions of these two measures, and Fisher's α – were modelled as functions of MAP , annual fire burn frequency and the principal components of soil properties.

Results

Most soil nutrients and OC increased with MAP , except in the wettest sites. Woody productivity increased with MAP , while fire frequency was highest at intermediate values of MAP . Woody plant diversity increased with MAP but decreased with increasing fire frequency, resulting in two local diversity maxima along the MAP gradient – in the semi‐evergreen and dry thorn forest – separated by a low‐diversity central region in dry deciduous forest where fire frequency was highest. Soil variables were, on the whole, less strongly correlated with diversity than MAP .

Conclusions

Although woody plant diversity in this landscape, representative of regional SDTF s, is primarily limited by water availability, our study emphasizes the role of fire as a potentially important second‐order driver that acts to reduce diversity in this landscape.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号