首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Dickkopf-3(DKK3),Wnt/p-catenin信号通路中一个重要的抑制因子,可能参与调控黑色素生成过程.本文研究了DKK3在羊驼黑色素细胞中黑色素生成的作用.在羊驼黑色素细胞中,过表达DKK3显著下调Wntl,Lefl,Myc和黑色素生成相关基因MITF及其下游基因TYR,TYRP1和TYRP2的表达,在...  相似文献   

2.
3.
以黄颡鱼(Pelteobagrus fulvidraco)为实验对象, 灌喂氧化鱼油、鱼油7d后, 提取胃肠道黏膜总RNA, 采用RNA-seq测序并做转录组分析, 分析了黑色素生物合成途径关键酶(酪氨酸酶)及其相关蛋白基因、黑素体运动的3个蛋白基因、α黑素细胞刺激激素途径和WNT/β-catenin、EDN3和EDNRB、KIT及其配体KITL3个信号通路的主要蛋白基因的差异表达活性。结果显示, 黄颡鱼胃肠道黏膜中存在黑色素细胞分化和发育过程、黑色素合成及其调控途径的代谢网络, 通过绘制代谢网络得到了关键性酶或蛋白质的基因信息。在灌喂氧化鱼油后, 控制黑色素合成途径主要基因的表达活性显著下调, 可能导致黑色素合成量的不足; α-MSH激素途径主要基因差异表达上调, 具备促进黑色素细胞分化和发育的调控基础; 而调控黑色素细胞分化和发育的3个信号通路主要基因也有差异表达。因此, 黄颡鱼受灌喂氧化鱼油的影响, 黑色素细胞分化和发育过程受到较大影响, 会影响到鱼体成熟的黑色素细胞的数量, 同时, 黑色素的生物合成量不足将导致引起黄颡鱼体色的变化。  相似文献   

4.
bFGF与黑色素关系的研究进展   总被引:2,自引:0,他引:2  
碱性成纤维细胞生长因子(bFGF)是一种具有多种生物学效应的细胞因子。目前对bFGF与黑色素关系的研究主要集中在bFGF对黑色素细胞的生长产生的影响和对黑色素生成的调控等方面,并进而探讨研究治疗黑色素相关疾病的机理,综述了在这些方面的研究进展。  相似文献   

5.
蛋白激酶B(AKT),在细胞存活、代谢、迁移和侵袭等信号通路中起着重要的调控作用。细胞信号转导抑制因子3(SOCS3)主要参与酪氨酸蛋白激酶(JAK)/信号传导子和转录激活子3(STAT3)传导途径的负反馈调节,可能参与AKT的磷酸化,进而调控肿瘤的发生。根据SOCS3蛋白的生物学特性和AKT信号通路的激活途径,综述了SOCS3在AKT信号通路中的调控作用,以期针对SOCS3靶向AKT信号通路进行抗肿瘤研究,为肿瘤的治疗提供一种新的思路。  相似文献   

6.
肿瘤对人类的生存危害极大,恶性肿瘤的治疗一直是世界性的难题。肿瘤血管生成是肿瘤赖以生长、转移的基础,受多种因子的调节。目前发现有多条信号网络参与调控肿瘤血管生成,PI3K/Akt是其中比较重要的一条信号传导途径,该通路与肿瘤的发生发展密切相关。本文介绍了PI3K/Akt信号通路的结构组成与活性调控,并重点阐述PI3K/Akt信号途径与肿瘤血管生成的关系。  相似文献   

7.
黑色素皮质素1受体MC1R)是在黑色素细胞内表达的G蛋白耦合受体(G protein coupled receptor, GPCR)家族成员,参与黑色素细胞中黑色素的生成。微RNAs(miRNAs)是一类非编码RNA,通过与靶基因3′-UTR结合抑制基因表达。已有研究证明,miR-338-3p 在多种人类肿瘤细胞中(过)表达,可通过下调靶基因表达抑制肿瘤细胞的侵袭迁移能力。然而,有关miR-338-3p对羊驼皮肤黑色素细胞的黑色素合成影响却罕见报道。本研究证明,miRNA-338-3p通过靶向抑制MC1R基因表达,抑制羊驼黑色素细胞黑色素的生成。采用生物信息学预测MC1R基因是miRNA-338-3p的靶基因,其基因表达抑制羊驼黑色素细胞黑色素合成。随后构建miR-338-3p真核表达载体。其基因转染结合qPT-PCR和Western印迹结果揭示,与对照细胞比较,过表达miRNA-338-3p的羊驼黑色素细胞的MC1R基因,及其下游与黑色素生成相关的小眼相关性转录因子(MITF)、酪氨酸酶(TYR)、酪氨酸酶相关蛋白1(TYRP1)、酪氨酸酶相关蛋白2(TYRP2)编码基因mRNA及蛋白质表达水平明显下调。酶联免疫吸附分析显示,过表达miRNA-338-3p的羊驼皮肤黑色素细胞的黑色素产量,较对照细胞显著下降(P<0.01)。综上结果,miR-338-3p可通过抑制靶基因MC1R表达,下调其下游基因MITF、TYR、TYRP1和TYRP2基因的表达,从而抑制羊驼皮肤黑色素细胞黑色素的合成。miRNA-338-3p在羊驼生长发育过程中,是否参与调控体内皮肤黑色素细胞的黑色素生成尚待进一步研究。  相似文献   

8.
9.
Numb是重要的细胞命运决定因子,通过选择性剪接和不对称分裂方式来控制细胞的命运。Numb参与肿瘤信号通路,上游有Musashi2、HMGA1途径调控,下游调控Notch、p53、Hedgehog途径,涉及Wnt、TLR等途径,在致癌信号中影响较大。Numb也是Notch信号的负调控因子,通过参与肿瘤抑制,调控血管生成,以及增加癌症的放射敏感性等生理过程来抑制肿瘤的形成。总之,Numb作为重要的调节因子,为肿瘤的治疗提供了新的治疗靶点,具有很大的潜在治疗前景。本文对Numb在肿瘤发病中作用的近期研究予以简要概述。  相似文献   

10.
机体内脂质的稳态受到多条信号通路及其交错形成的复杂网络的调节,其中过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor,PPAR)信号通路可促进脂质生成,而腺苷酸活化的蛋白激酶(AMP-activated protein kinase,AMPK)信号通路促进脂肪酸的分解。miRNA作为一种转录后调控因子,可以调控脂质合成、分解等过程,在脂质代谢异常相关的疾病中具有重要的调控地位。本文基于61个已被报道受miRNA调控的脂质代谢相关基因,绘制这些基因之间的互作网络,从PPAR以及AMPK/SREBPs(sterol regulatory element-binding proteins)信号途径的角度综述了miRNA对脂质代谢的调控作用。  相似文献   

11.
Melanogenesis is a principal parameter of differentiation in melanocytes and melanoma cells. Our recent study has demonstrated that phospholipase D1 (PLD1) regulates the melanogenic signaling through modulating the expression of tyrosinase, the rate-limiting step enzyme in the melanin biosynthesis. The current study was designed to gain more insight into the involvement of PLD1 in the regulation of melanogenesis. To investigate the role of PLD1, we examined the effect of knockdown of endogenous PLD1 by small interference RNA (siRNA) on melanogenesis in B16 melanoma cells. It was shown that the melanin synthesis was induced in PLD1-knockdowned cells, and also that the level of melanin synthesis was well correlated with increases in expression level of tyrosinase and its related proteins (Tyrp1 and Dct). Furthermore, the reduction of expression levels of PLD1 by siRNA transfection was accompanied by diminution of ribosomal S6 kinase 1 (S6K1) phosphorylation. The activity of mammalian target of rapamycin (mTOR) is essential for phosphorylation of S6K1 and the treatment malanoma cells with rapamycin, a potent inhibitor of mTOR effectively induced melanogenesis. The results obtained here provide possible evidence that PLD1 exerts a negative regulatory role in the melanogenic process through mTOR/S6K1 signaling.  相似文献   

12.
Different skin colour among individuals is determined by the varying amount and types of melanin pigment. Melanin is produced in melanocytes, a type of dendritic cell located in the basal layer of the epidermis, through the process of melanogenesis. Melanogenesis consists of a series of biochemical and enzymatic reactions catalysed by tyrosinase and other tyrosinase-related proteins, leading to the formation of two types of melanin, eumelanin and pheomelanin. Melanogenesis can be regulated intrinsically by several signalling pathways, including the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), stem cell factor (SCF)/c-kit and wingless-related integration site (Wnt)/β-catenin signalling pathways. Ultraviolet radiation (UVR) is the major extrinsic factor in the regulation of melanogenesis, through the generation of reactive oxygen species (ROS). Antioxidants or antioxidant systems, with the ability to scavenge ROS, may decrease melanogenesis. This review focuses on the two main cellular antioxidant systems, the thioredoxin (Trx) and glutathione (GSH) systems, and discusses their roles in melanogenesis. In the Trx system, high levels/activities of thioredoxin reductase (TrxR) are correlated with melanin formation. The GSH system is linked with regulating pheomelanin formation. Exogenous addition of GSH has been shown to act as a depigmenting agent, suggesting that other antioxidants may also have the potential to act as depigmenting agents for the treatment of human hyperpigmentation disorders.  相似文献   

13.
Melanogenesis is a complex multistep process of high molecular weight melanins production by hydroxylation and polymerization of polyphenols. Melanins have a wide range of applications other than being a sun - protection pigment. Melanogenesis pathway exists from prokaryotes to eukaryotes. It has evolved over years owing to the fact that the melanin pigment has different roles in diverse taxa of organisms. Melanin plays a pivotal role in the existence of certain bacteria and fungi whereas in higher organisms it is a measure of protection against the harmful radiation. We have done a detailed study on various pathways known for melanin synthesis across species. It was divulged that melanin production is not restricted to tyrosine but there are other secondary metabolites that synthesize melanin in lower organisms. Furthermore the phylogenetic study of these paths was done to understand their molecular and cellular development. It has revealed that the melanin synthesis paths have co-evolved in several groups of organisms. In this study, we also introduce a method for the comparative analysis of a metabolic pathway to study its evolution based on similarity between enzymatic reactions.  相似文献   

14.
The IFPCS presidential lecture: a chemist's view of melanogenesis   总被引:2,自引:0,他引:2  
The significance of our understanding of the chemistry of melanin and melanogenesis is reviewed. Melanogenesis begins with the production of dopaquinone, a highly reactive o-quinone. Pulse radiolysis is a powerful tool to study the fates of such highly reactive melanin precursors. Based on pulse radiolysis data reported by Land et al. (J Photochem Photobiol B: Biol 2001;64:123) and our biochemical studies, a pathway for mixed melanogenesis is proposed. Melanogenesis proceeds in three distinctive steps. The initial step is the production of cysteinyldopas by the rapid addition of cysteine to dopaquinone, which continues as long as cysteine is present (1 microM). The second step is the oxidation of cysteinyldopas to give pheomelanin, which continues as long as cysteinyldopas are present (10 microM). The last step is the production of eumelanin, which begins only after most cysteinyldopas are depleted. It thus appears that eumelanin is deposited on the preformed pheomelanin and that the ratio of eu- to pheomelanin is determined by the tyrosinase activity and cysteine concentration. In eumelanogenesis, dopachrome is a rather stable molecule and spontaneously decomposes to give mostly 5,6-dihydroxyindole. Dopachrome tautomerase (Dct) catalyses the tautomerization of dopachrome to give mostly 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Our study confirmed that the role of Dct is to increase the ratio of DHICA in eumelanin and to increase the production of eumelanin. In addition, the cytotoxicity of o-quinone melanin precursors was found to correlate with binding to proteins through the cysteine residues. Finally, it is still unknown how the availability of cysteine is controlled within the melanosome.  相似文献   

15.
The significance of our understanding of the chemistry of melanin and melanogenesis is reviewed. Melanogenesis begins with the production of dopaquinone, a highly reactive o‐quinone. Pulse radiolysis is a powerful tool to study the fates of such highly reactive melanin precursors. Based on pulse radiolysis data reported by Land et al. (J Photochem Photobiol B: Biol 2001;64:123) and our biochemical studies, a pathway for mixed melanogenesis is proposed. Melanogenesis proceeds in three distinctive steps. The initial step is the production of cysteinyldopas by the rapid addition of cysteine to dopaquinone, which continues as long as cysteine is present (1 μM). The second step is the oxidation of cysteinyldopas to give pheomelanin, which continues as long as cysteinyldopas are present (10 μM). The last step is the production of eumelanin, which begins only after most cysteinyldopas are depleted. It thus appears that eumelanin is deposited on the preformed pheomelanin and that the ratio of eu‐ to pheomelanin is determined by the tyrosinase activity and cysteine concentration. In eumelanogenesis, dopachrome is a rather stable molecule and spontaneously decomposes to give mostly 5,6‐dihydroxyindole. Dopachrome tautomerase (Dct) catalyses the tautomerization of dopachrome to give mostly 5,6‐dihydroxyindole‐2‐carboxylic acid (DHICA). Our study confirmed that the role of Dct is to increase the ratio of DHICA in eumelanin and to increase the production of eumelanin. In addition, the cytotoxicity of o‐quinone melanin precursors was found to correlate with binding to proteins through the cysteine residues. Finally, it is still unknown how the availability of cysteine is controlled within the melanosome.  相似文献   

16.
Melanogenesis is one of the characteristic functional activities of melanocyte/melanoma and is regulated via mitogen-activated protein kinase (MAPK) and Akt/protein kinase B (PKB) pathways. Placental total lipid fraction (PTLF), prepared from a hydroalcoholic extract of fresh term human placenta contains sphingolipids and was recently shown to stimulate melanogenesis via up-regulation of the key enzyme tyrosinase in B16F10 mouse melanoma cells. How such lipids mediate their effects on pigmentation and tyrosinase expression is a particularly important aspect of melanogenesis. To study the signaling that leads to tyrosinase expression, we have investigated the roles of the MAPK and Akt/PKB pathways in B16F10 melanoma cells in melanogenesis in response to PTLF. Treatment of cells with PTLF led to the time dependent phosphorylation of p38 MAPK. SB203580, a p38 MAPK inhibitor, completely blocked the PTLF-induced melanogenesis by inhibiting promoter activity and subsequent expression of tyrosinase. Phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002 a blocker of the Akt signaling pathway, or an inhibitor of MEK (MAPK/ERK Kinase), PD98059 when included along with PTLF was found to potentiate PTLF-induced phosphorylation of p38 MAPK together with tyrosinase expression and melanogenesis. The results suggest that the activation of p38 MAPK plays a crucial role in PTLF-induced B16F10 melanogenesis by up-regulating tyrosinase expression.  相似文献   

17.
Regulation of mammalian melanogenesis. II: The role of metal cations   总被引:2,自引:0,他引:2  
Melanogenesis can be divided into two phases. The first one involves two tyrosinase-catalyzed oxidations from tyrosine to dopaquinone and a very fast chemical step leading to dopachrome. The second phase, from dopachrome to melanin, can proceed spontaneously through several incompletely known reactions. However, some metal transition ions and protein factors different from tyrosinase might regulate the reaction rate and determine the structure and relative concentrations of the intermediates. The study of the effects of some divalent metal ions (Zn, Cu, Ni and Co) on some steps of the melanogenesis pathway has been approached using different radiolabeled substrates. Zn(II) inhibited tyrosine hydroxylation whereas Ni(II) and Co(II) were activators. Ni(II), Cu(II) and Co(II) accelerated chemical reactions from dopachrome but inhibited its decarboxylation. Dopachrome tautomerase also decreased decarboxylation. When metal ions and this enzyme act together, the inhibition of decarboxylation was greater than that produced by each agent separately, but amount of carboxylated units incorporated to the melanin was not higher than the amount incorporated in the presence of only cations. The amount of total melanin formed from tyrosine was increased by the presence of both agents. The action of Zn(II) was different from other ions also in the second phase of melanogenesis, and its effect on decarboxylation was less pronounced. Since tyrosine hydroxylation is the rate-limiting step in melanogenesis, Zn(II) inhibited the pathway. This ion seems to be the most abundant cation in mammalian melanocytes. Therefore, under physiological conditions, the regulatory role of metal ions and dopachrome tautomerase does not seem to be mutually exclusive, but rather complementary.  相似文献   

18.
The synthesis of melanin pigments, or melanogenesis, is regulated by the balance of a variety of signal transduction pathways. Among these pathways, p38 MAPK signaling was found to be involved in stress-induced melanogenesis and to be activated by α-melanocyte-stimulating hormone (α-MSH) and ultraviolet irradiation. Previous studies have shown that α-MSH-stimulated melanogenesis can be inhibited by blocking p38 MAPK activity with SB203580, a pyridinyl imidazole compound. Consistent with this, we observed that pyridinyl imidazoles (SB203580 and SB202190) inhibited both basal and α-MSH-induced melanogenesis in B16 melanoma cells. However, SB202474, which has no ability to inhibit p38 MAPK activity and is usually used as a negative control compound in p38 MAPK studies, also suppressed melanin synthesis induction. Furthermore, the independence of the p38 kinase pathway from the repression of melanogenesis by pyridinyl imidazole compounds was also confirmed by small interfering RNA experiments. Interfering with p38 MAPK expression surprisingly stimulated melanogenesis and tyrosinase family protein expression. Although the molecular mechanism(s) by which p38 promotes the degradation of melanogenic enzymes remain to be determined, the involvement of the ubiquitin-proteasome pathway was demonstrated by co-treatment with the proteasome-specific inhibitor MG132 and the relative decrease in the ubiquitination of tyrosinase in cells transfected with p38-specific small interfering RNA.  相似文献   

19.
Mitochondrial dynamics control mitochondrial functions as well as their morphology. However, the role of mitochondrial dynamics in melanogenesis is largely unknown. Here, we show that mitochondrial dynamics regulate melanogenesis by modulating the ROS‐ERK signaling pathway. Genetic and chemical inhibition of Drp1, a mitochondrial fission protein, increased melanin production and mitochondrial elongation in melanocytes and melanoma cells. In contrast, down‐regulation of OPA1, a mitochondria fusion regulator, suppressed melanogensis but induced massive mitochondrial fragmentation in hyperpigmented cells. Consistently, treatment with CCCP, a mitochondrial fission chemical inducer, also efficiently repressed melanogenesis. Furthermore, we found that ROS production and ERK phosphorylation were increased in cells with fragmented mitochondria. And inhibition of ROS or ERK suppressed the antimelanogenic effect of mitochondrial fission in α‐MSH‐treated cells. In addition, the activation of ROS‐ERK pathway by mitochondrial fission induced phosphorylation of serine73 on MITF accelerating its proteasomal degradation. In conclusion, mitochondrial dynamics may regulate melanogenesis by modulating ROS‐ERK signaling pathway.  相似文献   

20.
The mouse melanoma cell line B16/C3 offers an excellent in vitro model for studying melanocyte differentiation. Melanogenesis can be induced by serum, a hormone-supplemented serum-free medium, melanocyte stimulating hormone, and dibutyryl cAMP. The tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate, 5-bromodeoxyuridine, and acidic pH inhibit this process. Using two-dimensional polyacrylamide gel electrophoresis, we have identified four cellular proteins whose production is modulated during melanogenesis, a process which includes concomitant increases in levels of tyrosinase, the rate limiting enzyme for melanin biosynthesis, melanization, and ultimately, cell death. The production of these proteins are coordinately expressed or inhibited in response to the diverse inducers and inhibitors of melanogenesis. We conclude from these studies that these specific proteins are intimately involved in the differentiation of B16/C3 melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号