首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 640 毫秒
1.
滴水珠珠芽发育过程研究   总被引:1,自引:0,他引:1  
朱燕燕  罗睿  陈海丽  刘丹 《广西植物》2018,38(2):225-232
珠芽是滴水珠(Pinellia cordata)的营养繁殖结构,为揭示滴水珠珠芽发育过程中的特征,该研究以野外采集材料进行盆栽观察试验,通过形态观察法和石蜡切片方法,探索滴水珠叶片和叶柄处珠芽发育过程中的形态学和解剖学结构特征。结果表明:滴水珠珠芽发育过程在形态上分为叶柄无现象时期、早期珠芽结构分化和珠芽膨大成熟时期三个时期;相应的解剖学发育时期为珠芽原基启动期和形成期、原基分化期和膨大成熟期四个阶段。叶片和叶柄珠芽起始细胞均由叶柄腹面表皮下层薄壁细胞组织脱分化形成,起始细胞不断分裂形成细胞团最后发育成珠芽原基;在原基分化期的特征是生长点形成,最终分化形成芽原基和鳞片叶;膨大成熟期的特征是珠芽结构不断生长,生长点侧生分化鳞片叶增多。叶片和叶柄处珠芽成熟脱落时期为灰色椭圆形结构,测得平均直径分别为(2.79±0.40)mm和(2.69±0.36)mm,外部有鳞片包裹,内部含大量营养物质。在环境适宜条件下,珠芽遇土萌发,萌发率达75%。这表明滴水珠珠芽与同属植物半夏珠芽发育过程差别不大,都是无性克隆营养繁殖体结构。  相似文献   

2.
王雨  罗睿 《西北植物学报》2022,42(11):1862-1869
该研究采用形态观察法、石蜡切片法以及扫描电子显微镜法对稀子蕨(Monachosorum henryi)胞芽发育过程及营养器官进行观察分析,以揭示不同蕨类植物胞芽生殖在发育生物学上的异同,为进一步探讨蕨类植物胞芽发育与被子植物珠芽发育的异同等奠定基础。结果表明:(1)稀子蕨羽叶薄,由7~8层细胞组成,气孔分布于下表皮,无明显栅栏组织和海绵组织分化。(2)稀子蕨的叶轴含1束“心”形维管束,叶柄基部至中部含2束维管束;成熟根能看到明显的维管束组织,无髓。(3)稀子蕨的复羽叶发育过程可分为萌动期、卷拳期、展叶期、成熟期和衰老期;复羽叶上的胞芽发育从展叶期开始,包括胞芽原基发育期、胞芽分化期、胞芽膨大期和胞芽成熟期。(4)稀子蕨胞芽原基起源于叶轴与羽叶分叉处表皮细胞下的薄壁细胞层;胞芽原基分化出多个叶原基,整体呈指状“锚”状;胞芽成熟后掉落土壤或在母体上萌发生长出新叶。  相似文献   

3.
通过形态学观察和石蜡切片方法研究了半夏[Pinellia ternata(Thunb.)Breit.]的珠芽发育过程,结果显示:半夏珠芽着生于叶柄的下部,起始于幼嫩叶柄的腹面最外轮维管束外周薄壁细胞;恢复分裂的薄壁细胞分裂形成珠芽原基细胞团,在原基生长突破叶柄表皮后分化形成具有生长点的珠芽结构,发育中的珠芽无根分化;珠芽的生长被动地终止于叶片衰老(倒苗),无明显的成熟发育过程。研究表明,半夏的珠芽是不定芽性质的无性繁殖结构,但在发育过程上明显区别于其它植物的珠芽发育。  相似文献   

4.
珠芽是弥勒魔芋的一种重要营养繁殖器官。以弥勒魔芋为材料,通过形态学观察以及解剖学研究,揭示了弥勒魔芋珠芽形成过程中的一系列特征。结果显示:弥勒魔芋珠芽生长于植株叶柄分叉以及裂叶分叉处,由主干茎或主干叶柄表皮下的薄壁细胞重新获得分裂能力后分化而来。珠芽的发育过程可分为珠芽原基启动形成期,珠芽膨大期和珠芽成熟期。珠芽的生长终止于植株衰老倒伏。研究表明,弥勒魔芋的珠芽生长位点明显区别于其他常见植物,珠芽繁殖是魔芋适应生态环境的一种重要机制。  相似文献   

5.
木立芦荟叶的发育解剖学研究   总被引:5,自引:0,他引:5  
应用植物解剖学方法研究了木立芦荟(Aloe arborescens Mill.)叶的发育过程。研究结果表明,叶原基在发育早期其形态是不对称的,内部为同形细胞组成,但很快分化成原表皮,原形成层束和基本分生组织。以后,原表皮发育成表皮,位于原表皮下的2-5层基本分生组织细胞发民同化薄壁组织,而位于中央的基本分生组织细胞则发育成储水薄壁组织,原形成层束发育成维管束。维管束由维管束鞘、木质部、韧皮部和大型薄壁细胞组成。大型薄壁细胞起源于原形成层束,位于韧皮部内,其发育迟于筛管、伴胞,为芦荟属植物叶的结构特征。  相似文献   

6.
采用石蜡切片法对落葵薯(Anredera cordifolia(Tenore)Steenis)粘液细胞的分布及发育进行了研究。结果表明,粘液细胞普遍存在于落葵薯的茎、叶、叶柄中,粘液细胞单个散生分布于茎的髓及皮层组织中;叶的栅栏组织和海绵组织中都可见粘液细胞,且海绵组织中的数量明显多于栅栏组织中的;叶柄中的粘液细胞不多,主要分布在维管束四周的皮层组织中。粘液细胞的发育分为4个阶段:原始细胞阶段、液泡化阶段、成熟阶段和细胞质解体阶段。粘液细胞最早出现于第六叶原基,且其发育与茎、叶器官的组织分化不同步。  相似文献   

7.
以野生淡黄花百合(Lilium sulphureum)为实验材料,通过形态学观察、石蜡切片方法对珠芽的发生规律、发育过程中的形态学变化及解剖结构特征进行了研究,以阐明淡黄花百合珠芽繁殖的生物学机制。结果显示:淡黄花百合的珠芽形成于地上茎叶腋处叶柄的近基部位置,由叶柄表皮以内数层薄壁细胞不断分裂和分化形成;珠芽的发育过程可划分为启动期、膨大期和成熟期三个时期。成熟珠芽外观上成圆形或椭圆形,珠芽中部的薄壁细胞含有大量淀粉颗粒。淡黄花百合的珠芽具有很高的萌发率(90%以上)。研究表明,珠芽营养繁殖是其生态适应的一种重要机制。  相似文献   

8.
德保苏铁茎的解剖学研究   总被引:2,自引:0,他引:2  
文祥凤  和太平  徐峰 《广西植物》2005,25(4):335-337,i0001
对德保苏铁茎、叶柄的解剖构造进行观察,结果表明:(1)德保苏铁的茎由周皮、皮层、维管束、髓四部分构成。木栓层的细胞壁完全栓化;皮层大而显著,皮层细胞一般较小,富含淀粉,分布有粘液道;维管束通常较小,主要集中在皮层和髓之间的狭窄区,排列呈环形,具2生长环;少部分稀疏地散生在皮层薄壁细胞之间。(2)叶柄由表皮、绿皮层、下皮层、基本组织、维管束、髓组成。表皮细胞1层,细胞外壁角质化;绿皮细胞2层,有叶绿体;下皮层的厚壁细胞,大小不一,细胞壁强烈增厚;维管束散生,属外韧维管束,排列呈环形,内有零星分布的维管束。  相似文献   

9.
该文采用光学显微镜,首次对九种瘤足蕨属植物的叶柄和羽片横切面进行了解剖学比较研究。结果表明:九种瘤足蕨属植物在叶柄中部横切面的表皮、基本组织和中柱以及营养叶羽片的表皮、叶肉和主脉等结构特征是相似的,如叶柄中部横切面的表皮不被毛或是鳞片,表皮细胞形状呈类圆形,具有厚壁组织,中柱为周韧型维管束;营养叶羽片横切面的气孔只分布于下表皮,表皮细胞形状呈扁平状,主脉的结构类型属于周韧型维管束。在系统的演化中,瘤足蕨与桫椤科植物有一定的亲缘关系,两者既有相似的特征但也表现出一定的差异,支持瘤足蕨属是一个自然分类的观点。九种瘤足蕨属植物叶柄中部横切面形状有梯形、椭圆形和三角形,叶柄中部横切面维管束的形状成"U"字形、"V"字形或"品"字形;维管束数目1个或3个;维管束结构中的木质部成"八"字形、"U"字形或"一"字形;羽片主脉下侧形成了以三角形、弧形或梯形的突起;叶柄中的木质部形态有两种,即典型的海马形状以及非典型的海马形状,其中典型的海马形状的特点为叶柄的木质部两侧都呈现弯曲成钩的形态,非典型的海马形状特点为2个木质部束的两侧都未出现弯曲成钩的形态或者是其中的一个木质部一端无弯曲成钩的形态,这些形态解剖特征稳定且具类群特异性,为瘤足蕨属植物的分类和系统学研究提供了新的依据。同时,依据其叶柄和羽片横切面解剖叶柄学特征列出了瘤足蕨属植物分种检索表。  相似文献   

10.
中华水韭根叶发育的解剖观察   总被引:1,自引:0,他引:1  
中华水韭(Isoetes sinensis Palmer)为国家一级保护野生植物,被评价为极度濒危级(CR),仅分布在长江中下游,对环境污染敏感。本文以其人工苗为材料,用石蜡切片法,连续观察了根和叶的发育特征:叶原基横切面呈端部渐圆的三角形,由表皮原、皮层原和中柱原三部分组成;维管束中央首先出现的一个原生管胞,与其近轴面两侧后出现的两个后生管胞共同组成倒“V”字型的外始式初生木质部;成熟叶分化出表皮与皮层,表皮细胞间有嵌合,皮层部分细胞裂解成彼此不相通的4个通气道。根横切面呈圆形,成熟区分化出表皮、皮层(外皮层、中皮层、内皮层)和维管束三部分,中皮层部分细胞裂解呈一个完整的筒状通气道并与外皮层无连接,由内皮层包围的维管束横切面呈三角形。讨论了根和叶的形态结构、功能及系统学意义。  相似文献   

11.
以卷丹(Lilium laneifolium)珠芽为试材,采用野外调查法、石蜡切片法、徒手切片法、离析法,观察珠芽各部分形态和结构,用分光光度法测定各片鳞叶的花青素和光合色素含量,为其珠芽繁殖生物学研究提供资料。结果表明,珠芽由鳞叶、鳞茎和不定根构成,鳞叶外表皮细胞具有发达的角质层,外表皮内侧1~2层叶肉细胞含有花青素;叶肉细胞含绿色造粉体,第1~3片鳞叶基部的绿色造粉体向不定根伸长方向集中分布,鳞叶色素含量由外至内逐渐降低;鳞叶维管束为外韧维管束。鳞茎主要由皮层和维管柱构成,鳞茎上端包括顶端分生组织和芽鞘,在下端细胞部分发生程序性死亡,但未发现类似叶片脱落时叶柄基部出现的离层结构。不定根起源于第2片鳞叶基部环生的鳞茎皮层细胞,不定根与周围鳞叶组织分离。在珠芽萌发过程中鳞叶的物质供给出现分化现象。  相似文献   

12.
Leaves of the Princeton and a variegated clone of Coleus blumei Benth. were examined with the light microscope to determine the course of their vasculature and the spatial relationship between the mesophyll, bundle sheath, and vascular tissues. In Princeton clone leaves two leaf traces enter the petiole at the node and quickly branch to form an arc of bundles which undergo further divisions as well as fusions in the distal half of the petiole. The anastomosing arc of bundles reaches its greatest complexity in the base of the midvein, where its lateral-most bundles unite and diverge outward to form secondary veins. As the midvein bundles continue acropetally, they gradually fuse more and divide less until only a single bundle remains, from which secondaries and smaller veins branch. Major (ribbed) veins include not only the midvein and secondaries but also tertiary and quaternary veins. Decreasing vein size is accompanied by increasing direct contact between vascular and photosynthetic tissues. Minor veins, which make up 86% of the total vein length, are completely surrounded by photosynthetic bundle sheaths and mesophyll consisting of palisade and spongy parenchyma. Statoliths occur in a layer of cells just outside the phloem of the petiole-midrib axis and secondary veins. Functional hydathodes are present at the apices of the marginal teeth. The overall organization of tissues in variegated leaves differs little in either the green or albuminous areas from corresponding (but always green) regions of Princeton leaves. Chloroplasts are lacking in mesophyll, bundle-sheath, and most guard cells of the albuminous region but are present in guard cells which are within 1 mm of green areas.  相似文献   

13.
Summary An optimum 10-day exposure of petioles of alfalfa [Medicago sativa ssp.falcata (L.) Arcangeli] to 2,4-dichlorophenoxyacetic acid or 2,4,5-trichlorophenoxyacetic acid results in the semisynchronous production of somatic embryos starting about 4 days after transfer to a non-auxin-containing medium. The timing of cell division induction in the petiole explants was found to vary depending on the petiole tissue type. Cells adjacent to the vascular bundles divide first at about 48 h after exposure to auxin, closely followed by those of the inner parenchyma, whereas most of the cells of the subepidermal and epidermal layers start to divide later, between 72 and 120 h. Two different sources of callus were also evident. Cells adjacent to the vascular bundles and the inner parenchyma cells were the primary source of callus when a short, 2-day (non-embryo-producing) exposure to auxin was used. In contrast, the subepidermal and epidermal cells were the primary source of callus tissue when a longer, 10-day (embryo producing) exposure was used. It is concluded that the source of somatic embryos is primarily the daughter cells of the subepidermal or epidermal tissue or both.  相似文献   

14.
为了解酢浆草(Oxalis corniculata)叶片和花朵的感夜性,采用半薄切片方法对其叶枕和花托进行形态解剖学观察。结果表明,黑暗处理酢浆草后叶片完全闭合,3枚叶片以叶轴为轴线向下紧贴闭合。黑暗处理8 h花瓣完全闭合并螺旋成束状,花萼紧贴螺旋的花瓣但不发生螺旋。叶片张开时屈肌侧皮层薄壁细胞收缩,伸肌侧皮层薄壁细胞膨大。叶片闭合时屈肌侧皮层细胞膨胀,伸肌侧表皮细胞和3~5层外皮层薄壁细胞收缩。花朵闭合时,花托基部的5个维管束收缩合并成2束明显分离的维管束群,且存在细胞壁加厚的现象;花托角隅处细胞膨胀。叶枕中的屈肌和伸肌细胞的收缩或膨胀控制酢浆草叶片的感夜运动,酢浆草花朵的感夜运动主要与花托基部的维管束群和花托角隅处细胞的膨大和收缩有关。  相似文献   

15.
This study aims to determine whether morphoanatomical characters of the leaves of the species of Chamaecrista sect. Absus subsection Baseophyllum could be used to support an up-ranking of C. cytisoides varieties to the species level as previously defined by molecular studies. The significance of anatomical adaptive strategies to arid environments is also discussed. Standard light microscopy techniques and histochemical tests were used for both morphoanatomical and histochemical characterization of the leaves. All the species studied share a single-layered epidermis, actinodromous–camptodromous–brochidodromous type of venation, vascular bundles surrounded by layers of fibers bounded externally by a sheath of cells containing solitary crystals, enlarged tracheids at the vein endings, vascular petiole/rachis tissue with a parenchymatous pith, accessory vascular bundles, mucilage idioblasts and hypodermis in the mesophyll, colleters, and non-secretory trichomes. The position and type of stomata, type of mesophyll, number of palisade and spongy parenchyma layers, position of mucilage idioblasts in the mesophyll, and the number of accessory vascular bundles of petiole/rachis provided useful characters for discriminating the eight species of the subsect. Baseophyllum. Histochemical tests reveal the presence of total polysaccharides, pectins, mucilage and phenolic compounds in the idioblasts. Other xeromorphic characters such as thickened outer periclinal cell walls, compact mesophyll, mucilage idioblasts and hypodermis in the mesophyll may help enable the studied species to survive in exposed sunny areas.  相似文献   

16.
 In walnut (Juglans regia L.), an otherwise difficult-to-root species, explants of cotyledons have been shown to generate complete roots in the absence of exogenous growth regulators. In the present study, this process of root formation was shown to follow a pattern of adventitious, rather than primary or lateral, ontogeny: (i) the arrangement of vascular bundles in the region of root formation was of the petiole type; (ii) a typical root primordium was formed at the side of the procambium within a meristematic ring of actively dividing cells located around each vascular bundle; (iii) the developing root apical meristem was connected in a lateral way with the vascular bundle of the petiole. This adventitious root formation occurred in three main stages of cell division, primordium formation and organization of apical meristem. These stages were characterized by expression of LATERAL ROOT PRIMORDIUM-1 and CHALCONE SYNTHASE genes, which were found to be sequentially expressed during the formation of the primordium. Activation of genes related to root cell differentiation started at the early stage of primordium formation prior to organization of the root apical meristem. The systematic development of adventitious root primordia at a precise site gave indications on the positional and biochemical cues that are necessary for adventitious root formation. Received: 30 July 1999 / Accepted: 16 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号