首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
植物冷驯化相关信号机制   总被引:5,自引:0,他引:5  
植物经过非致死温度的处理可以获得更强的抗冷能力叫做冷驯化,主要包括寒驯化和冻驯化 .在冷驯化过程中,质膜首先感受冷信号,调节胞质中IP3的含量,诱导胞质Ca2+浓度的升高,从而激活CBF基因的表达.至今已经克隆了大量的冷调控基因,组成了复杂的信号传导网络,其中ICE1-CBF-COR通路在植物的冷驯化过程中起到重要的作用.ICE1基因编码一个MYB类型的碱性螺旋 环-螺旋(bHLH)转录因子,在上游调节CBF和 其它转录因子的表达,提高抗冷性. HOS1蛋白通过泛素化介导的蛋白降解负调控ICE1,另外,CBF还通过转录的自我调控保持恰当的表达水平.基因的分析研究证明,RNA修饰和核质转运在植物的抗冷过程中也具有重要作用.在不依赖于CBF的途径中,转录因子HOS9和HOS10在调节抗冷有关基因的表达和提高抗冷能力方面具有至关重要的作用.  相似文献   

2.
3.
CBF:平衡植物低温应答与生长发育的关键   总被引:1,自引:0,他引:1  
低温是影响植物生长发育以及植被分布的重要环境因子。目前,低温信号研究中比较清楚的是CBF依赖的低温信号途径。该文总结了近年来有关CBF的研究成果,详细介绍了CBF家族成员在植物耐寒性中的重要作用,着重分析与讨论CBF介导的低温调控网络及一系列复杂调控机制。理解CBF的复杂作用机制有助于了解植物中CBF介导的冷信号如何平衡耐寒性与生长发育,进而有助于耐寒作物的培育。  相似文献   

4.
植物在低温驯化过程中能诱导许多基因的表达。其中CBF转录因子是目前植物抗寒分子生物学领域研究的热点之一。它通过与低温诱导基因启动子区域中的CRT/DRE调控元件结合,调控一系列低温诱导基因的表达,从而提高植物的抗寒性。对植物低温诱导CBF转录因子的结构、功能及其表达调控等方面的研究进展进行了综述。  相似文献   

5.
高连静  张竞秋 《西北植物学报》2007,27(11):2354-2359
拟南芥中CBF(C-repeat binding factor)转录因子在抗寒性方面起重要作用,低温可诱导CBF转录因子的表达。CBF转录因子能够特异结合启动子中含有CRT/DRE(C-repeat/dehydration responsive element)的顺式元件,激活COR等基因的表达,从而增强植株抗寒能力,对调控逆境诱导基因的表达具有非常重要的作用。对CBF转录因子的结构特点、功能、表达调控以及与CBF相关的其它低温调节途径进行了综述,为提高植物综合抗逆性的研究提供参考。  相似文献   

6.
低温胁迫(冷害和冻害)严重影响植物的生长发育和地理分布, 是制约作物产量和品质的主要因素之一。在自然界, 植物通过感知低温信号并启动一系列响应机制来抵御冷冻伤害。MAP蛋白激酶家族在植物响应逆境胁迫信号过程中发挥重要作用, 但其是否参与冷冻胁迫信号传递仍不清楚。最近, 朱健康、杨淑华和种康研究团队先后报道了拟南芥(Arabidopsis thaliana)和水稻(Oryza sativa)通过MAPK级联反应途径参与冷冻胁迫应答反应, 通过磷酸化ICE1来调控其稳定性, 并阐明了ICE1提高植物抗冷冻能力的分子机制。他们的研究完善了ICE1介导的低温应答网络, 是植物低温应答研究领域的重要突破, 并为未来的作物分子设计育种提供了强有力的理论依据。  相似文献   

7.
低温影响着植物的生长、发育并限制着农业生产,因此,植物抗寒性的提高与分子育种具有实际意义。抗寒性植物的基因资源发掘能够为非抗寒性植物的抗性分子育种提供帮助。针叶福禄考(Phlox subulata)作为多年生草本花卉,具有很强的抗寒性。本研究利用转录组测序方法从针叶福禄考中筛选获得了6个重要冷调控相关基因,包括冷相关转录因子Ps ICE1和Ps CBF/DREB基因;冷调控基因Ps COR413pm和Ps COR413im以及抗氧化酶基因Ps SOD和Ps POD。PCR扩增与测序显示实际克隆的基因序列与测序结果相似性高达99%以上,说明转录组测序作为基因资源发掘方法的可靠性。此外,不同低温处理下的差异基因表达显示6个基因的表达量都随温度的降低而增加,说明它们与低温胁迫存在直接的应答关系并在植物应对冷胁迫中发挥着重要的功能。  相似文献   

8.
拟南芥CBF1与植物对低温和干旱的抗性   总被引:2,自引:0,他引:2  
刘粉霞  谭振波  朱建清  邓晓建 《遗传》2004,26(3):394-398
对冷驯化过程中基因表达差异的认识,使抗冻基因(COR)的克隆及其功能的分析成为研究冷驯化过程的主要目标。在拟南芥和其他抗冻植物中,分离了许多COR基因,这些基因对植物抗冻起着非常重要的作用。在拟南芥COR调控的研究中,发现了CBF转录因子的基因家族,其中CBF1能调控一组COR基因的表达。近年来,在冷敏植物如番茄和玉米中也发现了CBF类似基因,拟南芥CBF1基因在转基因番茄中的过量表达提高了植株的抗寒和抗旱性。这一研究结果展示了拟南芥CBF1类似基因的应用可能为冷敏植物抗寒和抗旱性的品种改良提供一条新的途径。  相似文献   

9.
康菊清  张岱鹏 《植物学报》2016,51(5):577-585
活性氧(ROS)是植物光合作用和呼吸作用的副产物, 环境胁迫可加速植物体内ROS的产生, 造成植物细胞膜的过氧化, 同时给光反应中心II带来光伤害。RFOs是植物体内的1类寡聚糖家族, 其对环境胁迫的响应很可能与清除过剩的ROS相关。前期的研究显示, 由于中国长江流域野生拟南芥(Arabidopsis thaliana)种群中CBF3基因的变异, 种群的冰冻耐受性和体内RFOs含量的积累普遍低于Col生态型。研究表明, 长江流域种群中ROS代谢通路在低温处理后的表达与Col生态型相比发生了明显的分化, 并且植物体内ROS的浓度增高; 而将Col生态型中能正常响应环境冷信号的CBF3基因转入长江流域种群后, 转基因植株的冰冻耐受性得到显著提高, 体内RFOs积累亦增加, 而ROS浓度显著降低。这些结果说明, 低温条件下CBF3很可能通过直接调控植物体内RFOs的生物积累来参与调控下游过剩ROS的清除过程。中国长江流域野生拟南芥种群低温条件下体内ROS浓度的升高, 很可能是由于种群中CBF3基因发生了自然变异从而丧失了冷响应能力造成的。  相似文献   

10.
细胞膜感知低温环境信号,通过信号转导激活以CBF/DREB信号途径为主、兼与其他途径交谈和交叠所构成的信号网络,继而调控下游相应功能蛋白的表达,赋予植物低温抗性。文章重点介绍了拟南芥CBF/DREB信号传导途径的研究进展、CBF基因在高等植物中的保守性,以及构建CBF转基因抗冻植物所取得的成果,包括CBF的表达调控与作用的分子机制、影响CBF途径的一些重要蛋白和环境因子、组成性启动子以及冷诱导特异性启动子驱动CBF基因表达所获得的抗冻转基因植物的研究进展。同时,对该研究领域未来可能的发展方向进行了展望。  相似文献   

11.
12.
Cold stress regulation of gene expression in plants   总被引:22,自引:1,他引:21  
  相似文献   

13.
14.
15.
16.
17.
18.
Low temperature is an abiotic stress that adversely affects the growth and production of plants. Resistance and adaptation of plants to cold stress is dependent upon the activation of molecular networks and pathways involved in signal transduction and the regulation of cold-stress related genes. Because it has numerous and complex genes, regulation factors, and pathways, research on the ICE–CBF–COR signaling pathway is the most studied and detailed, which is thought to be rather important for cold resistance of plants. In this review, we focus on the function of each member, interrelation among members, and the influence of manipulators and repressors in the ICE–CBF–COR pathway. In addition, regulation and signal transduction concerning plant hormones, circadian clock, and light are discussed. The studies presented provide a detailed picture of the ICE–CBF–COR pathway.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号