首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
日灼对酿酒葡萄‘霞多丽’果实品质与解剖结构的影响   总被引:1,自引:0,他引:1  
以酿酒葡萄品种‘霞多丽’为试验材料,采用石蜡切片与CFDA荧光染色观察日灼果皮细胞结构与细胞活性变化,同时测定日灼发生后葡萄果实品质及相关生理指标变化,以揭示日灼对果实品质与细胞结构的影响。结果表明:(1)随着葡萄日灼病加重,果实表皮颜色由浅黄色逐渐加深,后期甚至出现细胞坏死。(2)果实发生日灼后,果实硬度与含水量下降,细胞壁含量增加,果皮从外向内第1~3层细胞明显变小,细胞壁增厚。(3)随着日灼病加重,果皮细胞破裂,且破裂数量增加,细胞活性也随之下降,果皮保护功能逐渐丧失,果肉细胞逐渐失水导致了果实皱缩;重度日灼果实周缘维管束木质部导管受到果皮细胞失水断裂的影响,出现断裂变形。(4)在葡萄果实日灼发生过程中,受到高温与强光照胁迫影响,同时伴随着水分散失增加,果实可溶性固形物含量和总糖含量增加,但有机酸含量降低,糖酸比随之增加;以上各品质指标值的大小与果实水分含量密切相关。研究发现,日灼引起了葡萄果实结构变化与生理代谢的紊乱,随着日灼程度加重,果皮细胞逐渐死亡,果实内水分大量散失,果实糖含量增加,严重影响了葡萄果实的外观和内在品质。  相似文献   

2.
为探究乌苏里鼠李(Rhamnus ussuriensis)茎叶的解剖结构对环境的适应性机理,采用石蜡切片及扫描电镜技术,对乌苏里鼠李叶片、茎的解剖结构进行研究。结果表明:乌苏里鼠李叶片为典型异面叶,表皮毛和气孔均分布在下表皮,气孔指数为39.04%;栅栏组织由2层薄壁组织细胞组成,结构紧密,海绵组织排列疏松。叶片主脉发达,维管束呈环状排列,木质部导管数量较多,直径较大,维管束周围薄壁组织细胞后含物丰富。在茎的初生结构中,表皮细胞角质层较厚,皮层薄壁组织细胞内含有晶簇,维管束为外韧无限维管束,髓部发达;茎的次生结构中年轮显明,为典型的环孔材,有凹下的皮孔,次生木质部发达,导管以螺纹导管与孔纹导管居多,导管分子多为复管孔;射线以单列射线为主,偶见双列射线。乌苏里鼠李叶片、茎的解剖结构具有明显的抗逆特性,能够较好的适应干旱、寒冷环境。  相似文献   

3.
为了从显微结构上进一步探讨虉草(Phalaris arundinacea L.)的抗旱耐涝性及与利用的关系,于2011年采用常规石蜡切片技术,对其根、茎叶3种营养器官进行解剖观察。结果表明,虉草根的结构自外而内依次为表皮、皮层、维管束鞘、初生韧皮部和初生木质部;茎由表皮、基本组织和维管束构成;叶片内部结构可分为表皮、叶肉和叶脉3部分。根皮层大的细胞间隙和气腔,初生木质部的后生大导管和茎基本组织解体形成的髓腔都是虉草良好的通气组织,是其耐水淹的主要显微特征。茎、叶片角质化的表皮和叶表皮所含的丰富泡状细胞组是虉草具有抗旱性的主要解剖结构特征。叶肉细胞排列紧密且只有少量气孔分布于叶片下表皮,这样的结构可减少蒸腾;叶肉细胞富含叶绿体,增强光合作用,获得更多的同化产物,确保了植株在干旱条件下也有足够的光合产物来维持正常的生理活动。茎、叶维管束部分大量的木纤维起到支撑作用。虉草根的皮层和维管柱部分、茎的基本组织和维管束部分、叶的叶脉部分都含有大面积的厚壁细胞,厚壁细胞中含有丰富的粗纤维和木质素。丰富的粗纤维、木质素等成分则是虉草能成为新能源燃料植物的必备条件。  相似文献   

4.
五爪金龙茎的解剖结构   总被引:5,自引:0,他引:5  
运用常规石蜡切片、显微观察及显微照相的方法,对五爪金龙(Ipomoea cairica)茎的结构进行了观察研究,结果表明:五爪金龙茎的解剖结构以初生结构为主,维管形成层已经形成,但次生结构尚不发达。通常具3~6个空腔,初步推断其为裂生式分泌道;表皮外弦向壁增厚,具角质层,具气孔及气室;紧贴表皮内方的1~3层和皮层最内1~3层的细胞可能为分泌细胞;具双韧维管束,木质部极为发达,导管细胞紧密排列,围绕内韧皮部和中央的髓而成一圆周;形成层位于外韧皮部与木质部之间;茎中央是大型薄壁细胞构成的髓,具簇晶。  相似文献   

5.
运用常规石蜡切片、显微观察及显微照相的方法, 对五爪金龙( Ipomoea cairica) 茎的结构进行了观察研究, 结果表明: 五爪金龙茎的解剖结构以初生结构为主, 维管形成层已经形成, 但次生结构尚不发达。通常具3~6 个空腔, 初步推断其为裂生式分泌道; 表皮外弦向壁增厚, 具角质层, 具气孔及气室;紧贴表皮内方的1~3 层和皮层最内1~3 层的细胞可能为分泌细胞; 具双韧维管束, 木质部极为发达, 导管细胞紧密排列, 围绕内韧皮部和中央的髓而成一圆周; 形成层位于外韧皮部与木质部之间; 茎中央是大型薄壁细胞构成的髓, 具簇晶。  相似文献   

6.
在大田栽培条件下,大豆‘垦农4号’于开花始期叶面喷施植物生长物质2-N,N-二乙氨基乙基己酸酯(DTA)、氯化胆碱(CC)和SOD模拟物(SODM),并比较不同植物生长物质影响大豆叶片、叶柄和茎的解剖结构。结果表明,喷施植物生长物质后30d,叶中栅栏组织厚度及栅海比均增加;喷施SODM、DTA的叶中主脉维管束横截面积和木质部导管数目增加,CC对主脉维管柬横截面积和木质部导管数目的影响不明显;喷施3种植物生长物质的叶柄表皮细胞厚度、叶柄维管束横截面积和导管数量增加,茎部薄壁组织、韧皮部和木质部厚度增加,茎的直径也增加。  相似文献   

7.
刘萍  宋磊  任毅  田先华  张小卉 《西北植物学报》2006,26(11):2208-2213
应用解剖学方法,对铁筷子(Helleborus thibetanusFranch.)(毛茛科)营养器官的结构进行了研究。结果表明,铁筷子根的初生结构观察到三原型、四原型和六原型。营养器官中的维管束在横切面上木质部中的导管分子不呈“V”字形排列;根状茎的次生结构由外向内为表皮、皮层和维管柱,髓射线发达。茎的初生结构中多个维管束排列成环状,维管束鞘分化不明显,节部为单隙三迹,叶迹分别来自于3条维管束或同一条维管束。叶为两面叶,表皮细胞不规则;气孔器只分布于下表皮,为毛茛科典型的无规则型气孔。从铁筷子营养器官的解剖学特点来看,与毛茛科其它植物基本相同,但在营养器官中维管束木质部不呈“V”字形、维管束鞘分化不明显、节部具单叶隙等特征上与其它毛茛科植物不同。  相似文献   

8.
采用石蜡切片和光学显微技术对闽楠(Phoebe bournei(Hemsl.)Yang)营养器官的解剖结构及其生态适应性进行了研究。结果显示,闽楠为典型异面叶,叶片中脉发达,维管束呈扇形,导管径向排列,韧皮部外侧有大量韧皮纤维分布。上表皮外侧具角质层,下表皮外侧无角质层,下表皮细胞呈犬牙状向外凸起,有表皮毛和气孔分布,气孔为双环型、外凸;栅栏组织由1层细胞组成,海绵组织由3~4层细胞组成。茎的初生结构中,表皮轻微角质化,厚角细胞5~6层,薄壁细胞5~7层,维管束为外韧型;茎的次生结构中,表皮外部角质层加厚,木栓层细胞3~4层,木栓形成层细胞1层,栓内层细胞2~3层,维管束紧密排列连成环状,次生韧皮部和次生木质部发达,形成层细胞2~3层。根的次生结构中木栓层细胞5~6层,木栓层内侧具1层木栓形成层,栓内层细胞2层。闽楠营养器官的解剖结构特征一方面呈现出阴生植物的特点,另一方面也对阳生和旱生环境具有一定的适应性。  相似文献   

9.
采用解剖学和组织化学法,研究蕤核(Prinsepia uniflora Batal.)茎的显微结构,并对茎中的黄酮类、生物碱类及多糖的组织化学定位进行了研究。研究表明:蕤核幼茎表皮细胞的细胞壁厚,木质部含有较多的导管,初生木质部为内始式发育,维管束在横切面上呈"V"形,茎中髓部发达;老茎有突起的皮孔,次生维管组织呈一个完全闭合的环状。组织化学定位显示黄酮,生物碱,糖类和脂类物质多分布于皮层。  相似文献   

10.
1.罗汉果根、茎、叶的结构与葫芦科其它植物大致相似;不同之处有三方面:(1)叶子主脉中维管束为5个:(2)叶子中有硅质细胞成群分布;(3)块根具异常次生生长;在次生木质部中围绕导管形成形成层,由之分化出多个具韧皮部与木质部的小维管束。2.叶中的硅质细胞分布于表皮、栅栏组织、海绵组织中,多个细胞集合在一起。其细胞壁加厚并硅质化,细胞内容物消失。推测与增加叶子的支持力量有关。3.罗汉果雌株叶子上、下表皮气也数之比为0.04,雄株为0.03,比值均很低,同时根据叶的解剖结构推测罗汉果为C3植物。4.雌株叶子下表皮单位面积气孔数比雄株的多26%,差异很显著,值得进一步研究简化观察统计方法,以用于鉴别幼苗的性别。  相似文献   

11.
Grafted and ungrafted greenhouse melon were used to investigate the effect of diurnal change, shading, growth stage, rootstock and fruit numbers on melon xylem sap flow rate. A clear diurnal change was observed in xylem sap flow rate. Shading of the plant on the previous day decreased the sap flow rate. An increase in the number of fruit on a plant decreased the sap flow rate, but, grafting to squash plant lessened the effect of fruit number. Consideration of timing and environmental factors is necessary when the xylem sap is collected for root study.  相似文献   

12.
The role of xylem sap flow as an aqueous pathway for oxygen supply to the wood parenchyma of Betula pubescens saplings was investigated. Using micro‐optode sensors the oxygen status of the sapwood was quantified in relation to mass flow of xylem sap. Sap flow was gradually reduced by an increasing oxygen depletion in the root space. The effect of sap flow on radial O2 transport between stem and atmosphere was assessed by a stoichiometrical approach between respiratory CO2 production and O2 consumption. Restriction of sap flow set in 36.5 h after the onset of O2 depletion, and was complete after 71 h. Interruption of sap flow drastically increased the O2 deficit in the sapwood to 70%. Sap flow contributed about 60% to the total oxygen supply to the sapwood. Diurnal O2 flow rates varied between 3 and 6.3 nmol O2 m?2 leaf area (LA) s?1 during night‐ and daytime, respectively. Maximum O2 flow rates of 20 nmol O2 m?2 LA s?1 were reached at highest sap flow rates of 5.7 mmol H2O m?2 LA s?1. Sap flow not only affected the oxygen status of the sapwood but also had an effect on radial O2 transport between stem and atmosphere.  相似文献   

13.
以日光温室栽培的欧亚葡萄品种克瑞森无核为试验材料,在果实膨大期和始熟期采用不同浓度(50、100和150mg·L~(-1))5-氨基乙酰丙酸(ALA)喷施叶片和果穗,研究外源ALA处理对葡萄叶片光合特性、果实着色效果及果实品质的影响。结果表明:(1)各浓度ALA处理后葡萄叶片胞间CO_2浓度(Ci)、气孔导度(Gs)、蒸腾速率(Tr)、净光合速率(Pn)都有不同程度的增加,并以100mg·L~(-1) ALA处理效果最好。(2)50~150mg·L~(-1) ALA处理均能不同程度提高葡萄果皮花青素、叶绿素及类胡萝卜素含量,且各ALA处理的果实可溶性糖含量显著高于对照,但可滴定酸含量低于对照。(3)100和150mg·L~(-1) ALA处理能够显著改善果实成熟期的着色参数,且果实着色指数(CIRG)与花青素的积累呈现出良好的一致性。研究发现,在葡萄果实膨大期及始熟期喷施适宜浓度(100mg·L~(-1))ALA能够有效提高叶片光合性能,同时促进果实着色,显著改善果实外观色泽和果实品质。  相似文献   

14.
  • Positive sap pressures are produced in the xylem of birch trees in boreal conditions during the time between the thawing of the soil and bud break. During this period, xylem embolisms accumulated during wintertime are refilled with water. The mechanism for xylem sap pressurization and its environmental drivers are not well known.
  • We measured xylem sap flow, xylem sap pressure, xylem sap osmotic concentration, xylem and whole stem diameter changes, and stem and root non‐structural carbohydrate concentrations, along with meteorological conditions at two sites in Finland during and after the sap pressurisation period.
  • The diurnal dynamics of xylem sap pressure and sap flow during the sap pressurisation period varied, but were more often opposite to the diurnal pattern after bud burst, i.e. sap pressure increased and sap flow rate mostly decreased when temperature increased. Net conversion of soluble sugars to starch in the stem and roots occurred during the sap pressurisation period. Xylem sap osmotic pressure was small in comparison to total sap pressure, and it did not follow changes in environmental conditions or tree water relations.
  • Based on these findings, we suggest that xylem sap pressurisation and embolism refilling occur gradually over a few weeks through water transfer from parenchyma cells to xylem vessels during daytime, and then the parenchyma are refilled mostly during nighttime by water uptake from soil. Possible drivers for water transfer from parenchyma cells to vessels are discussed. Also the functioning of thermal dissipation probes in conditions of changing stem water content is discussed.
  相似文献   

15.
Dirk Gansert  Markus Burgdorf 《Flora》2005,200(5):444-455
The effect of xylem sap flow in stems of mature Betula pendula Roth on radial CO2 efflux was studied from April to October 2001. Temperature-controlled respiration cuvettes allowed measurements of CO2 efflux without interference from temperature gradients between stem surface and sapwood. Variations of sap flow in different stem sectors, and in a given sector at different heights were analysed. Daytime reduction of CO2 efflux caused by sap flow was expressed as the difference between gross and apparent CO2 release. Gross CO2 release was calculated from Arrhenius-equations derived from night-time data records of the same day, which were free from interference by sap flow. In mid-July, daytime reductions of CO2 efflux reached 1.8–3.9 μmol CO2 m−2 g−1 xylem sap transpired. Assuming tree-specific maximum transpiration rates of 30 kg H2O d−1 this is up to 40% of gross CO2 release. In relation to photosynthetic CO2 fixation the endogenous supply of dissolved CO2 to the leaves acccounted for 0.5–3.7%. This study indicates a negative correlation between sap flow velocity and radial CO2 efflux from B. pendula stems. Periods of unbalanced CO2 partial pressures between aqueous and gaseous pathways during increase and decrease of sap flow seem to affect gaseous CO2 release through lenticels. It is concluded that CO2 efflux rates are not simply equivalent to respiration rates because of the interference of aqueous CO2 transport by xylem sap flow in the wood-body of trees.  相似文献   

16.
Cytokinins in the Phloem Sap of White Lupin (Lupinus albus L.)   总被引:5,自引:2,他引:3       下载免费PDF全文
Cytokinin-like activity in samples of xylem and phloem sap collected from field-grown plants of white lupin (Lupinus albus L.) over a period of 9 to 24 weeks after sowing was measured using the soybean hypocotyl callus bioassay following paper chromatographic separation. The phloem sap was collected from shallow incisions made at the base of the stem, the base of the inflorescence (e.g. stem top), the petioles, and the base and tip of the fruit. Xylem sap was collected as root exudate from the stump of plants severed a few centimeters above ground level. Concentration of cytokinin-like substances was highest in phloem sap collected from the base of the inflorescence and showed an increase over the entire sampling period (from week 10 [61 nanogram zeatin equivalents] to week 24 [407 nanogram zeatin equivalents]). Concentrations in the xylem sap and in the other phloem saps were generally lower. Relatively high concentrations of cytokinin-like substances in petiole phloem sap (70 to 130 nanogram zeatin equivalents per milliliter) coincided in time with high concentrations in sap from the base of the inflorescence (see above). Concentrations in sap (phloem or xylem) from the base of the stem were very much lower. This finding is consistent with movement of cytokinins from leaves into the developing inflorescence and fruit, rather than direct input to the fruit from xylem sap. However, an earlier movement of cytokinins from roots into leaves via the xylem cannot be ruled out. Sap collected at an 18-week harvest was additionally separated by sequential C18 reversed-phase high performance liquid chromatography → NH2 normal phase high performance liquid chromatography, bioassayed, and then analyzed by electron impact gas chromatography-mass spectrometry. Identification of zeatin riboside and dihydrozeatin as two of the major cytokinins in combined sap samples was accomplished by gas chromatography-mass spectrometry-selected ion monitoring.  相似文献   

17.
Diurnal water balance of the cowpea fruit   总被引:9,自引:1,他引:8       下载免费PDF全文
The vascular network of the cowpea (Vigna unguiculata [L.] Walp.) fruit exhibits the anatomical potential for reversible xylem flow between seeds, pod, and parent plant. Feeding of cut shoots with the apoplast marker acid fuchsin showed that fruits imported regularly via xylem at night, less frequently in early morning, and only rarely in the afternoon. The dye never entered seeds or inner dorsal pod strands connecting directly to seeds. Root feeding (early morning) of intact plants with 32PO4 or 3H2O rapidly (20 min) labeled pod walls but not seeds, consistent with uptake through xylem. Weak subsequent (4 hours) labeling of seeds suggested slow secondary exchange of label with the phloem stream to the fruit. Vein flap feeding of subtending leaves with [14C]sucrose, 3H2O, and 32PO4 labeled pod and seed intensely, indicating mass flow in phloem to the fruit. Over 90% of the 14C and 3H of fruit cryopuncture phloem sap was as sucrose and water, respectively. Specific 3H activities of transpired water collected from fruits and peduncles were assayed over 4 days after feeding 3H2O to roots, via leaf flaps, or directly to fruits. The data indicated that fruits transpired relatively less xylem-derived (apoplastic) water than did peduncles, that fruit and peduncle relied more heavily on phloem-derived (symplastic) water for transpiration in the day than at night, and that water diffusing back from the fruit was utilized in peduncle transpiration, especially during the day. The data collectively support the hypothesis of a diurnally reversing xylem flow between developing fruit and plant.  相似文献   

18.
Satsuma mandarin fruit (Citrus unshiu Mark.) photosynthesizes as comparable to leaf at about 100 days after full bloom (DAFB). In this study, translocation and accumulation of fruit-fixed photosynthate were investigated by using 14CO2. When fruit at 108 DAFB was exposed to 14CO2 for 48 h under 135 photosynthetic photon flux density (PPFD), 14C-sucrose, 14C-glucose and 14C-fructose were detected not only in flavedo but juice sac; more than 50?% of fruit assimilated 14C-sugars were present in juice sac. Thus, majority of rind-fixed photosynthate are infiltrated into juice sac and accumulated there within 48 h after assimilation. Although 14C-sucrose was predominant at flavedo where high SS (sucrose synthase) activity toward synthesis was present, the amount decreased gradually from the outside (flavedo) to the inside (juice sac) of fruit. In vascular bundle, strong SS toward cleavage and soluble acid invertase activities were involved, and 14C-fructose was predominant in juice sac. Accordingly, rind-fixed photosynthate is once converted to sucrose, the translocated sugar in Citrus, at flavedo by SS toward synthesis, and loaded on vascular bundle through symplastic and/or apoplastic movement in the albedo tissue. In the vascular bundle, sucrose may be degraded by SS toward cleavage and invertase, and resulting hexoses transported symplastically to the juice sac through juice stalk.  相似文献   

19.
The vasculature of the dorsal suture of cowpea (Vigna unguiculata [L.] Walp) fruits bled a sugar-rich exudate when punctured with a fine needle previously cooled in liquid N2. Bleeding continued for many days at rates equivalent to 10% of the estimated current sugar intake of the fruit. A phloem origin for the exudate was suggested from its high levels (0.4-0.8 millimoles per milliliter) of sugar (98% of this as sucrose) and its high K+ content and high ratio of Mg2+ to Ca2+. Fruit cryopuncture sap became labeled with 14C following feeding of [14C]urea to leaves or adjacent walls of the fruit, of 14CO2 to the pod gas space, and of [14C] asparagine or [14C]allantoin to leaflets or cut shoots through the xylem. Rates of translocation of 14C-assimilates from a fed leaf to the puncture site on a subtended fruit were 21 to 38 centimeters per hour. Analysis of 14C distribution in phloem sap suggested that [14C]allantoin was metabolized to a greater extent in its passage to the fruit than was [14C] asparagine. Amino acid:ureide:nitrate ratios (nitrogen weight basis) of NO3-fed, non-nodulated plants were 20:2:78 in root bleeding xylem sap versus 90:10:0.1 for fruit phloem sap, suggesting that the shoot utilized NO3-nitrogen to synthesize amino acids prior to phloem transfer of nitrogen to the fruit. Feeding of 15NO3 to roots substantiated this conclusion. The amino acid:ureide ratio (nitrogen weight basis) of root xylem sap of symbiotic plants was 23:77 versus 89:11 for corresponding fruit phloem sap indicating intense metabolic transfer of ureide-nitrogen to amino acids by vegetative parts of the plant.  相似文献   

20.
Vascular Development and Sap Flow in Apple Pedicels   总被引:4,自引:2,他引:2  
Xylem and phloem tissues of the pedicel of apple fruit increasein cross-sectional area throughout development. The increasein phloem is similar in the two cultivars examined (Cox's OrangePippin and Royal Gala) and reflects a steadily increasing phloemsap flow to the fruit. The increase in xylem tissue is due toa proliferation of non-conducting, structural, components sinceclose examination reveals no increase in the number of vesselelements from just after flowering onwards. The greater number,and the larger diameter, of the vessels in Cox's explains theinitially higher xylem conductance found in this cultivar. In vitro measurements of xylem exudation reveal a decline duringthe growing season in the xylem conductance of both cultivarsand an increasing proportion of fruit (particularly in Cox's)in which the xylem comes to be totally non-conducting. Thisobservation is in line with previously reported measurementsof xylem sap flow in vivo. The straightforward techniques used in this study offer a feasiblealternative to more arduous methods of assessing xylem and phloemsap flows and their balance during growth.Copyright 1994, 1999Academic Press Apple, xylem, phloem, vascular development, sap flow, Malus domestica Borkh  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号