首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】假单胞菌SJTE-1可高效转化17β-雌二醇,但是催化该转化的酶尚不清楚。本文鉴定了该菌株的一个新的3-酮酰基-ACP还原酶(ANI01589.1),并对其进行了功能研究。【方法】首先,我们克隆了该3-酰基-ACP还原酶的编码基因,在大肠杆菌BL21(DE3)菌株中进行了异源表达;利用金属离子亲和层析法,纯化获得了重组蛋白。体外检测了重组蛋白的活性与酶学性质,并利用高效液相色谱法(HPLC)测定了该酶的催化产物。【结果】3-酮酰基-ACP还原酶可被17β-雌二醇诱导表达,重组蛋白纯化量可达19.6mg/L。蛋白序列比对结果表明,该蛋白包含短链脱氢酶/还原酶(SDR)的2个共有区域和多个保守残基。该酶以NAD~+为辅助因子,将17β-雌二醇转化为雌酮;其Km值为0.071 mmol/L, k_(cat)值为2.4±0.06/s~(–1),5 min内可转化超过95.8%的雌二醇。该酶的最佳反应温度为42°C,最佳pH为8.0。不同二价离子对该酶的活性影响不同,Mg~(2+)和Mn~(2+)可增强其酶活性。【结论】这一假单胞菌SJTE-1来源的3-酮酰基-ACP还原酶可高效催化17β-雌二醇的转化,该酶可能在该菌株的雌激素代谢过程中起到重要作用。  相似文献   

2.
[目的]假单胞菌SJTE-1可高效转化17β-雌二醇,但其代谢机制尚不清楚。本文鉴定和表征了该菌株中参与雌二醇降解与调控过程的17β-羟甾类脱氢酶2(17β-HSD2)和转录调控因子AraC。[方法]我们通过荧光定量PCR分析了17β-hsd2和araC的转录水平;我们在大肠杆菌BL21(DE3)菌株中异源表达了17β-HSD2和AraC基因,并利用金属离子亲和层析法纯化获得了重组蛋白;我们体外表征了17β-HSD2的酶学性质,利用高效液相色谱鉴定了其产物;通过电泳迁移转移法和DNase酶I足迹试验,我们鉴定了重组蛋白AraC的结合能力与结合位点。[结果]17β-HSD2和AraC可被17β-雌二醇诱导表达;蛋白序列比对结果表明17β-HSD2含有短链脱氢酶/还原酶(SDR)和β-羟甾类脱氢酶的保守结构与残基。该酶以NAD+为辅助因子,在C17位点氧化17β-雌二醇,其Km值为0.082 mmol/L,Vmax值为56.26±0.02μmol/(min·mg);5 min内可转化97.4%以上的雌二醇。转录调控因子AraC可直接结合17β-hsd2基因启动子区的特异位点;雌二醇与雌酮可解除这一结合,启动17β-hsd2基因转录;过表达AraC蛋白可抑制17β-hsd2的转录。[结论]假单胞菌SJTE-1的17β-羟甾类脱氢酶2可高效催化17β-雌二醇转化,并受到转录因子AraC的直接调控。本工作可推进细菌的雌激素降解酶学机制与调控网络研究。  相似文献   

3.
[目的]假单胞菌SJTE-1可高效转化17β-雌二醇,但其代谢机制尚不清楚。本文鉴定和表征了该菌株中参与雌二醇降解与调控过程的17β-羟甾类脱氢酶2 (17β-HSD2)和转录调控因子AraC。[方法]我们通过荧光定量PCR分析了17β-hsd2和araC的转录水平;我们在大肠杆菌BL21(DE3)菌株中异源表达了17β-HSD2和AraC基因,并利用金属离子亲和层析法纯化获得了重组蛋白;我们体外表征了17β-HSD2的酶学性质,利用高效液相色谱鉴定了其产物;通过电泳迁移转移法和DNase酶I足迹试验,我们鉴定了重组蛋白AraC的结合能力与结合位点。[结果]17β-HSD2和AraC可被17β-雌二醇诱导表达;蛋白序列比对结果表明17β-HSD2含有短链脱氢酶/还原酶(SDR)和β-羟甾类脱氢酶的保守结构与残基。该酶以NAD+为辅助因子,在C_(17)位点氧化17β-雌二醇,其K_m值为0.082 mmol/L,V_(max)值为56.26±0.02μmol/(min·mg);5 min内可转化97.4%以上的雌二醇。转录调控因子AraC可直接结合17β-hsd2基因启动子区的特异位点;雌二醇与雌酮可解除这一结合,启动17β-hsd2基因转录;过表达AraC蛋白可抑制17β-hsd2的转录。[结论]假单胞菌SJTE-1的17β-羟甾类脱氢酶2可高效催化17β-雌二醇转化,并受到转录因子AraC的直接调控。本工作可推进细菌的雌激素降解酶学机制与调控网络研究。  相似文献   

4.
[目的] 基于信号肽和信号肽酶在分泌系统中的重要作用,探索短小芽孢杆菌来源中性β-1,4-内切木聚糖酶在Bacillus subtilis中的重组分泌表达与优化。[方法] 首先,从短小芽孢杆菌基因组DNA中扩增β-1,4-内切木聚糖酶全长基因,连接到pWB980载体P43启动子下游,转化B.subtilis WB800构建重组菌NZ-X。之后,构建信号肽筛选载体,对23个从B.subtilis 168基因组DNA中扩增得到的信号肽进行筛选。最后,以B.subtilis WB800的xynA基因为整合位点,分别整合过表达SipS和SipT两个主要信号肽酶,考察其对融合不同信号肽异源蛋白分泌的影响。[结果] 重组菌NZ-X成功实现β-1,4-内切木聚糖酶的分泌表达,摇瓶发酵上清液酶活为5.33 U/mL,信号肽筛选结果发现YlaE、YfhK、EglS、YqxI、YpjP信号肽与β-1,4-内切木聚糖酶契合度较高,对应酶活依次为7.15、6.69、6.36、6.32、6.18 U/mL,其中SipS信号肽酶对融合YfhK信号肽的β-1,4-内切木聚糖酶的分泌促进作用最大,摇瓶发酵上清液酶活提高到10.64 U/mL,为NZ-X的1.99倍。[结论] 信号肽优化与信号肽酶过表达联用可有效提高B.subtilis中异源蛋白的分泌表达量。  相似文献   

5.
β-葡萄糖苷酶在食品、医药、生物质转化等领域具有重要的应用价值,因此发掘适应性强、性质优良的β-葡萄糖苷酶是国内外研究热点。本研究从嗜热古菌Infirmifilum uzonense中成功克隆出一个GH3家族的β-葡萄糖苷酶基因,命名为Iubgl3。基因序列分析显示Iubgl3全长为2109bp,编码702个氨基酸,理论分子量为77.0kDa。将该基因在大肠杆菌中进行克隆表达并对纯化后的IuBgl3进行酶学性质研究。结果显示,重组酶IuBgl3最适pH5.0,最适温度85℃。该酶具有良好的热稳定性,80℃处理2h后仍能保持85%以上的酶活力。其具有优良的pH稳定性,在pH4.0−11.0范围内处理1h,仍维持85%以上的酶活力。通过底物特异性测定发现,该酶对对硝基苯-β-d-吡喃葡萄糖苷(p-nitrophenylβ-d-glucoside,pNPG)和对硝基苯-β-d-吡喃木糖苷(p-nitrophenyl β-d-xylopyranoside,pNPX)均有很高的水解能力,是典型的双功能酶。以pNPG为底物时的动力学参数KmVmax分别为0.38mmol和248.55μmol/(mg·min),催化效率kcat/Km=6149.20s−1mmol−1。大多数金属离子对IuBgl3的酶活力没有显著影响,SDS可导致酶完全失活,而EDTA却能提高30%的酶活力。本研究丰富了高温古菌GH3家族的β-葡萄糖苷酶基因,获得了一个稳定性优良的高温酸性双功能酶,具有良好的工业应用前景。  相似文献   

6.
张朝晖  彭康  卢亚南  陆跃乐 《微生物学报》2020,60(11):2593-2605
[目的] 将一种可以高选择性水解R-甲霜灵的新脂酶基因,在大肠杆菌中进行克隆和表达,并研究重组脂酶的性质。[方法] 根据已知的目标酯酶N端10个氨基酸序列,在已测序的Albibacters sp. zjut528基因组中找到相匹配的一个酯酶基因,它全长969 bp,编码322个氨基酸,将该基因命名为RMest。通过引物扩增得到该基因的DNA片段,将它与表达载体pET-28a(+)连接后,转化大肠杆菌BL21Gold(DE3),构建重组菌,IPTG诱导表达该酯酶,并用Ni2+亲和层析介质进行纯化。[结果] 在重组菌RMest-pET-28a(+)-E.coli BL21 Gold(DE3)中成功表达了重组酯酶RMesterase,大小约为46 kDa。用胞内重组酶液催化水解R,S-甲霜灵,底物浓度10 g/L,反应6 h,底物转化率为49.8%,产物(甲霜灵酸)的eep为99.3%,对底物的对映体R-构型具有专一(选择)性。该酶最适温度和pH分别为40℃和pH 9.0。该酶的活性受到产物甲醇的抑制。通过Blast+在Uniprot KB数据库中搜寻与酯酶RMest同源的蛋白,采用邻近法构建该酶的蛋白系统发育树,结果显示它与某些Lysophospholipase、AB hydrolase-1 domain-containing protein和Esterase的同源性最高,但是与它们均存在较大的进化距离,表明该酶是一种相对独立进化的新酯酶。[结论] 在大肠杆菌中成功克隆和表达了一种新的脂酶基因RMest,重组酯酶RMesterase可以高手性选择性水解R,S-甲霜灵生成R-甲霜灵酸。  相似文献   

7.
[目的]来自Paenibacillus polymyxa WLY78的固氮基因簇(nifBHDKEfNXhesAnifV)可以转化入Escherichia coli中表达并使重组大肠杆菌合成有固氮活性的固氮酶。本文拟通过对重组大肠杆菌E.coli 78-7的转录组分析以提高其固氮能力。[方法]对固氮条件(无氧无NH4+)和非固氮条件(空气和100 mmol/L NH4+)培养的重组大肠杆菌E.coli 78-7进行转录组分析。[结果]nif基因在两种培养条件下显著表达,说明在重组大肠杆菌中可规避原菌中氧气和NH4+nif基因的负调控。对于固氮过程必需的非nif基因,如参与钼、硫、铁元素转运的modcysfeoAB,这些基因在两种培养条件下表达水平有差异。而参与铁硫簇合成的sufisc基因簇在两条件下表达水平差异巨大。此外,参与氮代谢的基因在固氮条件下显著上调。[结论]重组大肠杆菌中与固氮相关的非nif基因在该菌的固氮过程中具有较大影响,本文对在异源宿主中调高固氮酶活性研究具有重要意义。  相似文献   

8.
1,6-缩水-β-D-吡喃葡萄糖是纤维素类物质热解的主要产物,黑曲霉突变株CBX209能较好地利用该糖作为唯一的碳源和能源生长并产生有用的代谢产物柠檬酸,其效率与利用葡萄糖大致相当。利用葡萄糖氧化酶和辣根过氧化物酶复合系统测定证明该菌株不存在1,6-缩水-β-D-吡喃葡萄糖水解酶。采用快原子轰击质谱技术结合6磷酸葡萄糖脱氢酶系统进行测定,结果表明经(NH4)2SO4沉淀或阴离子交换层析处理后的无细胞提取液在加入ATP和Mg2+的条件下能直接催化1,6-缩水-β-D-吡喃葡萄糖合成6-磷酸葡萄糖,证明黑曲霉突变株中存在一个新酶,即1,6-缩水-β-D-吡喃葡萄糖激酶。该酶为诱导酶。  相似文献   

9.
γ-氨基丁酸可由谷氨酸脱羧酶(glutamate decarboxylase, GAD)催化谷氨酸一步合成,反应体系成分简单、环境友好。然而,绝大多数GAD酶催化pH偏酸性且反应范围狭小,需要加入无机盐维持最适催化环境,增加了生产附加成分。此外,随着产物γ-氨基丁酸的生成,溶液pH会逐渐上升,不利于GAD酶的持续转化。本研究首先从实验室保藏的一株高产γ-氨基丁酸的植物乳杆菌(Lactobacillus plantarum)中克隆得到谷氨酸脱羧酶LpGAD,基于酶蛋白表面电荷修饰,选择9个位点进行定点突变及组合突变,酶学性质表征结果显示三突变体LpGADS24R/D88R/Y309K在催化pH区间内酶活力整体提高,尤其拓宽了在偏中性pH 6.0下的酶活,为野生酶的1.68倍。接下来,通过分子动力学模拟解析了酶活提高的机理。此外,将LpgadLpgadS24R/D88R/Y309K突变基因分别在谷氨酸棒杆菌(Corynebacterium glutamicum) E01中过表达,通过优化确定了摇瓶最适转化条件为反应温度40 ℃,菌体量OD600=20,底物L-谷氨酸100.0 g/L,5-磷酸吡哆醛添加量为100 μmol/L。5 L发酵罐中,不调节pH,通过分批投料底物L-谷氨酸,γ-氨基丁酸产量高达402.8 g/L,较对照菌株提高了1.63倍。本研究成功拓宽了LpGAD的pH催化范围及酶活,提高了γ氨基丁酸的转化效率,为实现其规模化工业生产奠定了基础。  相似文献   

10.
[目的] 构建一株以廉价原料乳糖为底物合成塔格糖的重组菌株,实现一步法高效生物合成稀有糖——塔格糖。[方法] 从Escherichia coli K-12基因组中,PCR扩增出阿拉伯糖异构酶araA和β-半乳糖苷酶lacZ基因,以SD-AS为连接子,利用pET28a-1载体串联表达于Escherichia coli BL21(DE3),获得重组菌E.coli BL21/pET28a-araA-lacZ,对重组菌全细胞催化合成塔格糖的条件进行了工艺优化与放大研究。[结果] araAlacZ基因在E.coli BL21中同时高效表达,在最优条件(pH 8.0、温度50℃、5 mmol/L Mn2+、添加0.5 mol/L硼酸和0.1% SDS)下,E.coli BL21/pET28a-araA-lacZ全细胞转化100 g/L乳糖,合成塔格糖最高产量达24.03±2.03 g/L,乳糖到塔格糖的摩尔转化率为45.67%,随着底物乳糖浓度的提高,塔格糖产量呈不同程度的提高,当投加500 g/L底物乳糖时,全细胞合成塔格糖产量最高达83.81±1.38 g/L。[结论] 通过2个关键靶酶的编码基因araAlacZ在E.coli BL21细胞中进行共表达,实现了以重组菌全细胞为催化剂转化廉价底物乳糖,一步法高效合成稀有糖塔格糖,该研究为生物法制备低能量的功能性稀有糖奠定了较好的研究基础。  相似文献   

11.
[背景] 工业酵母菌株的蛋白质表达通常存在表达量低、分泌效率低的问题。[目的] 考察失活Yapsin蛋白酶Yps1p和Yps2p对β-葡萄糖苷酶在酿酒酵母An-α菌株中表达的影响。[方法] 利用CRISPR/Cas9基因组编辑技术,首先构建得到未折叠蛋白响应(Unfolded Protein Response,UPR)指示菌株An-α(leu2::UPRE-lacZ)即An-αL,然后分别失活其YPS1和YPS2基因,导入以YEplac195为载体的β-葡萄糖苷酶表达质粒(简称BG),进行生长和酶活分析评价。[结果] 菌株An-αL的YPS1和YPS2基因失活对其在酵母浸出粉胨葡萄糖(Yeast Extract Peptone Dextrose,YPD)培养基中的生长未造成明显的不利影响;导入质粒BG后将在酵母浸出粉胨纤维二糖(Yeast Extract Peptone Cellobiose,YPC)培养基中生长的最大OD600分别提高了21.9%和7.4%;最大总酶活值为0.087 5和0.068 6 U/(mL·OD600),是对照菌株相应值的2.268倍和1.778倍;分泌比例提高了19.4%和22.2%;β-葡萄糖苷酶表达水平与β-半乳糖苷酶酶活水平所代表的UPR信号响应值之间呈现良好的相关性。[结论] YPS1和YPS2基因失活有助于改进酿酒酵母An-α菌株中β-葡萄糖苷酶的分泌表达。  相似文献   

12.
[目的] 新颖结构的天然萘醌-氧吲哚类生物碱coprisidins(A和B)分离自昆虫肠道相关链霉菌,具有预防癌症的活性。作为首例具有萘醌-氧吲哚骨架的生物碱,对其独特生物合成机理的研究可为II型聚酮类化合物生物合成途径提供新的认知。[方法] 本研究对coprisidins的产生菌Streptomyces sp.SNU607进行全基因组测序,并根据测序结果的生物信息学分析初步定位coprisidins的生物合成基因簇;通过基因敲除以及异源表达手段确定coprisidins的生物合成基因簇;基于体内遗传学实验与生物信息学分析初步推导coprisidins的生物合成途径。[结果] Streptomyces sp.SNU607中有23个基因簇可能参与次级代谢,其中4个基因簇与聚酮合酶(PKS)相关;通过基因敲除与异源表达实验,本研究证实1个II型PKS负责coprisidins的生物合成;基于生物信息学分析,我们推测copH/I/M/O/N构成了1个基因盒,并负责起始单元丁酰CoA的合成;KSβ(CopB)的序列比对表明coprisidins的II型PKS系统更倾向于合成C20的初始聚酮链。[结论] Coprisidins的萘醌-吲哚结构是由II型PKSs催化形成,我们推测丁酰CoA是coprisidins聚酮骨架的起始单元,在最小PKS、聚酮酶、环化酶的催化下先形成类似蒽环的四环系统,随后在后修饰酶与氧化重排的作用下生成萘醌-氧吲哚骨架。本研究为进一步探究萘醌-氧吲哚类生物碱的生物合成机制奠定了基础,同时增加了II型PKSs合成产物的结构多样性。  相似文献   

13.
2-酮-L-古龙酸还原酶分离纯化及其理化、酶学性质的研究   总被引:3,自引:0,他引:3  
从发酵L山梨糖的GluconobacteroxydansBacilusmegaterium2980混和菌株的无细胞抽提液中分离到了2酮L古龙酸还原酶(KGR),测得其分子量为90kDa。动力学性质研究表明它为一个典型的MichaelisMenten氏酶,对2-酮-L-古龙酸作用的值为3.42×10-3mol,最适作用pH为6.5,最适作用温度为30℃。2-酮-L-古龙酸还原酶的合成不受L-山梨糖和2-酮-L-古龙酸的诱导,故推测2-酮-L-古龙酸还原酶是Gluconobacteroxydans的一个组成酶。  相似文献   

14.
李小龙  吴亦飞  张隽 《微生物学报》2021,61(10):3149-3158
[目的] 分离并鉴定三价单甲基砷(MAs (III))脱甲基菌株,对MAs (III)脱甲基菌FJ-6中arsI基因进行克隆表达,并对arsI基因表达蛋白进行功能鉴定。[方法] 利用富集培养的方法分离MAs (III)脱甲基菌株,并通过形态学、生理生化特征和16S rDNA基因进化分析进行鉴定;HPLC-ICP-MS鉴定菌株转化MAs (III)的产物为三价砷(As (III)),对菌株FJ-6的基因组进行生物信息学分析,寻找潜在的MAs (III)脱甲基酶编码基因,通过PCR扩增获得arsI全长基因,构建重组质粒pET29a-arsI,转化大肠杆菌BL21(DE3)菌株进行异源表达,通过Ni2+-NTA亲和层析柱纯化异源表达的蛋白,以MAs (III)为反应底物,检测MAs (III)脱甲基酶ArsI的酶学特性。通过实时定量PCR观察arsI的表达类型。[结果] Bacillus aryabhattai FJ-6在12 h内能将1 μmol/L MAs (III)完全转化为As (III)。克隆得到MAs (III)脱甲基酶表达基因arsI,构建了pET29a-arsI重组质粒并进行了表达,ArsI蛋白分子量为17.4 kDa。ArsI纯化蛋白具有较高的MAs (III)脱甲基酶的活性;荧光定量PCR实验结果表明arsI受砷诱导表达。[结论] 明确了ArsI蛋白具有MAs (III)脱甲基酶活性。  相似文献   

15.
香茅醇假单胞菌SJTE-3能够以17β-雌二醇为唯一碳源并将其高效降解,但其催化雌二醇转化的关键酶仍不明确.本文鉴定了该菌株中降解雌二醇的短链脱氢酶SDR-X1(WP_043267487.1),并对其功能进行了研究.首先利用荧光定量PCR,检测了不同碳源条件下基因sdr-x1的转录水平;克隆基因sdr-x1,在大肠杆菌...  相似文献   

16.
饶俊超  张荣珍  徐岩 《微生物学报》2020,60(11):2450-2460
[目的] 利用木聚糖为辅助底物加强手性催化反应中的辅酶循环,构建来源于近平滑假丝酵母(Candida parapsilosis)CCTCC M203011的(S)-羰基还原酶II(SCRII)、枯草芽孢杆菌(Bacillussp.)YX-1葡萄糖脱氢酶突变体Ala258Phe/GDH和里氏木霉(Trichoderma reesei)Rut C-30木聚糖酶(XYN2)在大肠杆菌(Escherichia coli)BL21(DE3)中的融合表达体系,高效合成(S)-苯乙二醇。[方法] 调节3种酶编码基因在pET-28a载体上的位置,运用重叠延伸PCR技术,构建了E.coli/pET-SCRII-A258F-XYN2和E.coli/pET-A258F-SCRII-XYN2两种重组菌,研究了其合成(S)-苯乙二醇的最适反应条件。[结果] 重组菌株E.coli/pET-SCRII-A258F-XYN2在底物2-羟基苯乙酮与辅助底物木聚糖的比例为1:1、35℃、pH为7.0条件下,(S)-苯乙二醇的产率达98.8%(W/W);而重组菌株E.coli/pET-A258F-SCRII-XYN2在底物与辅助底物的比例为2:1、35℃、pH为7.0条件下,(S)-苯乙二醇的产率达95.6%(W/W),两者合成产物的光学纯度均>99%。[结论] 通过构建3种酶的融合表达体系,成功将木聚糖酶和葡萄糖脱氢酶突变体介导的辅酶再生循环体系引入不对称生物合成反应,提高了手性转化效率,为将大自然中丰富的木聚糖用于手性催化奠定了较扎实的研究基础。  相似文献   

17.
细菌3-脱氧葡糖醛酮代谢酶的纯化及性质研究   总被引:7,自引:0,他引:7  
细菌Bacillus sp.2粗酶液通过(NH4)2SO4分级分离、Q Sepharose FF、Sephadex G-100(Ⅰ)、Hydroxyapatite和Sephadex G-100(Ⅱ)柱层析分离,纯化了一种以NADPH为辅酶的3-脱氧葡糖醛酮(3-DG)代谢酶,定性为2-羰基醛还原酶.纯化酶的比活力为63.75 U/mg,在SDS-聚丙烯酰胺凝胶上显示一条蛋白质带.该酶分子质量约为32 ku,酶反应最适pH约为6.2, 在pH 5~8, 温度25~30℃之间酶保持稳定;该酶对3-DG的Km为2.3 mmol/L.添加适量的EDTA、巯基乙醇或二硫苏糖醇能明显提高酶的活性;而碘乙酸、N-乙基顺丁烯二酰亚胺抑制酶的活性.  相似文献   

18.
在维生素C的发酵生产过程中,普通生酮基古龙酸菌S2Ketogulonigenium vulgare)能产生醇醛脱氢酶,将L-山梨糖转化为VC的前体2-酮基-L-古龙酸(2-KLG)。通过超声波破碎菌体、硫酸铵分级沉淀、DEAE Sepharose Fast Flow阴离子交换层析,Q Sepharose High Performance柱层析等过程,从普通生酮基古龙酸菌S2发酵液中分离纯化了醇醛脱氢酶,并用该纯化酶免疫新西兰兔制备出了合格抗血清。同时,普通生酮基古龙酸菌S2基因组DNA经Sau3AⅠ部分酶切后,与黏粒载体pKC505连接,用包装蛋白进行包装,转染大肠杆菌DH5ɑ,构建了基因组文库。最后应用免疫酶斑点技术(Dot-ELISA)从12 000个克隆子中筛选得到一个阳性克隆K719#。通过检测该基因工程菌的活性,表明K719#具有使L-山梨糖转化为2-KLG的功能,从而使醇醛脱氢酶在大肠杆菌中获得了高效表达,这为简化VC的生产工艺奠定了基础。  相似文献   

19.
利用KTAUPC-900快速蛋白液相色谱系统(FPLC)从绿色木霉MJ1固体发酵产物中分离纯化出内切β-葡聚糖苷酶。分离纯化后酶的比活力提高了28.6倍,回收率为19.7%。SDS-PAGE后经BIO-RAD凝胶成像系统分析该内切酶的分子量为64.7kD。酶学试验研究表明:该酶的最适反应温度53℃,最适pH为4.2,Lineweaver-Burk法求得动力学参数,KmVmax分别为1.230×10-2相似文献   

20.
[目的]谷氨酸棒杆菌是重要的氨基酸生产菌株,本研究针对SigE与ZAS家族蛋白CseE相互作用机制进行探索研究,重点分析CseE突变体影响与SigE结合能力的机制。[方法]本研究选择谷氨酸棒杆菌ATCC 13032来源的SigE和CseE蛋白为研究目标,利用遗传学方法获得过表达的重组谷氨酸棒杆菌,通过RT-qPCR研究SigE调控sigEcseE的转录情况。同时,利用ITC和His pull-down实验验证ZAS家族的CseE蛋白与Zn2+及SigE的结合情况。之后对CseE蛋白进行功能域分析、多序列比对,研究功能域关键氨基酸位点对SigE结合能力的影响。其次对SigE和CseE蛋白进行分子对接和动力学模拟,分析关键氨基酸影响其结合的机制。[结果]谷氨酸棒杆菌SigE调控基因sigEcseE的转录并且其活性受CseE蛋白控制。CseE蛋白为ZAS家族蛋白,具有Zn2+结合能力。CseEHis83A、CseEcys87A和CseEcys90A突变体不会影响与SigE的结合能力,而CseEC87A-C90A和CseEHis83A-C87A-C90A突变体与SigE的结合能力略有下降。分子动力学模拟发现SigE-CseEC87A-C90A和SigE-CseEHis83A-C87A-C90A之间的结合能量为-17.23 kcal/mol和-14.06 kcal/mol,分别比未突变体系结合能量降低22.8%及36.9%。[结论]谷氨酸棒杆菌SigE通过聚集RNA聚合酶来调控基因sigEcseE的表达。CseE蛋白属于ZAS家族,具有Zn2+结合能力同时通过与SigE蛋白互作来抑制SigE活性。CseEC87A-C90A及CseEHis83A-C87A-C90A突变体能影响与SigE结合的能力,减弱对SigE活性的控制。本研究产生的三维结构和确定的氨基酸关键位点为后续探索谷氨酸棒杆菌SigE和CseE响应环境压力机制提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号