首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
稀有人参皂苷IH901酶法转化与制备研究   总被引:1,自引:0,他引:1  
本研究利用酶制剂蜗牛酶,酶法转化三七二醇组皂苷制备稀有人参皂苷IH901,正交实验优化酶解条件,建立酶法转化工艺.结果表明:超声法提取三七总皂苷正交实验优化条件为用75%乙醇溶液,15倍溶剂用量,超声波提取210 min作为最佳条件,三七总皂苷得率为12.21%;酶法转化二醇组人参皂苷制备稀有人参皂苷IH901,正交实验优化的条件为物料比为6/1、反应时间9 h、反应温度为45℃、pH值为3.0,酶解得率为54.24%;经硅胶柱分离获得IH901单体化合物,HPLC测定纯度达98%.酶法转化制备皂苷IH901的工艺方法简便,切实可行,可为中试生产提供参考.  相似文献   

2.
人参皂苷是一类具有抗疲劳及提高免疫力等功能的固醇类化合物,其中含量极少的稀有人参皂苷Rg_3、Rh_2等还具有抗癌的功效,是主要活性成分,拥有广阔的应用前景。研究发现真菌可以产生能够水解人参皂苷糖基的β-葡萄糖苷酶,可以有效水解人参皂苷的糖基,将大量的常见皂苷转化为稀有皂苷,是大量获得稀有人参皂苷的新途径。本文对人参皂苷合成途径、糖基分布及数量与抗肿瘤的效果、β-葡萄糖苷酶的性质及其催化人参皂苷单体转换的规律进行了综述。相信随着现代分子生物学技术和酶工程的发展,工业上大规模获得稀有人参皂苷将有望实现。  相似文献   

3.
一种真菌对人参皂苷Rg3的转化   总被引:8,自引:0,他引:8  
[目的]筛选长白山人参土壤中的活性微生物,转化人参总皂苷及单体人参皂苷产生稀有抗肿瘤成份.[方法]从长白山人参根际土壤中分离各类菌株,对人参总皂苷及单体人参皂苷进行微生物转化,并通过硅胶柱层析等方法对转化产物进行分离纯化,采用波谱解析及理化常数对其进行结构鉴定;结合菌落形态、产孢结构、孢子形态特征以及菌株ITS rDNA核酸序列分析,对活性菌株进行鉴定.[结果]从长白山人参根际土壤中分离各类真菌菌株68株,有12株菌株对人参总皂苷有转化活性,其中菌株SYP2353对二醇组人参皂苷Rg3具有较强的转化活性.[结论]阳性菌株SYP2353被鉴定为疣孢漆斑菌(Myrothecium verrucaria),能将人参皂苷Rg3转化为稀有人参皂苷Rh2及二醇组人参皂苷苷元PPD,为稀有人参皂苷Rh2的制备提供了新的方法.  相似文献   

4.
人参皂苷是五加科人参属植物的主要活性成分之一。研究表明,人参皂苷经过体内代谢后生成的稀有皂苷在抗肿瘤、抗炎、抗衰老等方面的药理作用要强于原型皂苷,因此,稀有皂苷的制备成为目前人参研究领域的热点内容。人参皂苷的酶转化是稀有人参皂苷制备的主要途径之一,近些年取得了突破性的进展,以不同种类的糖苷酶为切入点,将相关研究内容进行了综述,分别讨论了不同类型的糖苷酶在稀有皂苷生物转化过程中的应用,以期为稀有皂苷的大规模开发利用奠定基础。  相似文献   

5.
人参皂苷IH901是近年人参代谢组学研究中新发现的一种稀有人参皂苷。IH901在天然人参中并不存在,系口服人参后通过系列肠道微生物在体内代谢转化,最终入血的主要代谢产物之一。最新药理学研究表明,IH901在抗肿瘤、抗炎、抗糖尿病和抗衰老等方面均表现出良好的生物活性,是人参在体内发挥活性作用的主要物质。近年来,在体内转化IH901的理论指导下,国内外学者通过体外酶转化和微生物转化等生物工程技术在大规模提取制备IH901等研究方面均取得突破性的进展。以下综述了稀有人参皂苷IH901在体内外的生物转化及其生物活性等研究进展。  相似文献   

6.
人参皂苷是我国传统中药人参的主要活性物质,稀有人参皂苷相较人参皂苷具有更好的生物活性,也更利于身体吸收,具有镇静催眠、促进细胞分化增殖、抗肿瘤、降血糖、提升免疫力等作用。然而,稀有人参皂苷结构复杂且在人参中含量极低,限制了其开发利用。随着生物技术的发展,利用生物法合成稀有人参皂苷成为本领域的研究热点。因此,对近年来生物合成稀有人参皂苷研究进行汇总梳理,总结稀有人参皂苷的主要种类结构及近年来生物转化法和异源合成法合成稀有人参皂苷的研究进展,生物转化法汇总了以人参皂苷为底物的转化生物,异源合成法总结人参皂苷的生物合成途径及形成结构多样化人参皂苷的酶。对生物合成稀有人参皂苷存在的问题进行了讨论,同时展望了其前景以及未来研究方向,以期为从事人参研究者提供更多生物线索和制备策略。  相似文献   

7.
利用菌种黑根霉Rhizopus sp.对人参皂苷Re进行生物转化,并对人参皂苷Re及其发酵产物进行HPLC系统分析比较,经液相色谱-质谱分析得出人参皂苷Re转化率为92.16%,并制备出人参皂苷Re发酵产物中峰值升高的成分,转化后的人参皂苷发酵产物中化合物1确定为人参皂苷Rg2,化合物2为Rg2的同分异构体,得率为10.13%;化合物3和化合物4确定为人参皂苷Rg5/Rk1,得率为29.23%。从结果初步推测得出人参皂苷Re被黑根霉转化为人参皂苷Rg2的机理,人参皂苷Re转化成人参皂苷Rg5/Rk1的机理还有待于进一步研究。  相似文献   

8.
酵母菌半连续转化人参皂苷Rb1的条件优化   总被引:1,自引:0,他引:1  
以单因素实验为基础,通过多因素方差分析实验对人参皂苷半连续转化的条件进行优化,选出最佳条件组合,得到最佳的补料方式,补料浓度为6%,补料体积为24mL,补料周期为12h,在此条件下人参皂苷Rb1生物转化达33.5%左右。在最佳补料条件下进行人参皂苷酵母菌转化,其稳定性好,转化率高,对工业生产有积极的推动作用。  相似文献   

9.
人参皂苷为人参主要的药理活性组成部分,通过水解二醇系人参皂苷的糖苷配基是制备稀有人参皂的常用方法。酶法转化因其底物高度专一、条件温和、副产物少等潜在优势而被作为结构修饰和生理研究的主要技术手段。本文主要对糖苷酶转化人参皂苷研究进展进行了综述,为其工业化生产高活性皂苷提供理论依据。  相似文献   

10.
《生物加工过程》2004,2(4):73-76
微生物连续催化法生产丙烯酰胺;基因工程菊粉酶水解菊芋生产果糖;用酶水解人参皂甙制备20-β-D-吡喃葡萄糖基原人参二醇;一种快速测定糖化酶活力的方法;烟酸羟基化微生物转化发酵与静息细胞转化综合生产工艺;纳米磁性颗粒分离纯化链酶亲合素的方法;一种洁净简便高效降解核酸的方法;从脱氧核糖核酸钠酶解液分离纯化脱氧核苷酸钠的方法  相似文献   

11.
Ginsenosides are the principal components responsible for the pharmaceutical activities of ginseng. The minor ginsenosides, which are also pharmaceutically active, can be produced via the hydrolysis of the sugar moieties in the major ginsenosides using acid hydrolytic, heating, microbial, and enzymatic transformation techniques. The enzymatic method has a profound potential for ginsenoside transformation, owing to its high specificity, yield, and productivity, and this method is increasingly being recognized as a useful tool in structural modification and metabolism studies. In this article, the transformation methods of ginsenosides, the characterization of microbial glycosidases with ginsenoside hydrolyzing activities, and the enzymatic production of minor ginsenosides are reviewed. Moreover, the conversions of ginsenosides using cell extracts from food microorganisms and recombinant thermostable β-d-glycosidases are proposed as feasible methods for use in industrial processes.  相似文献   

12.

Aims

This study examined the biotransformation pathway of ginsenoside Rb1 by the fungus Esteya vermicola CNU 120806.

Methods and Results

Ginsenosides Rb1 and Rd were extracted from the root of Panax ginseng. Liquid fermentation and purified enzyme hydrolysis were employed to investigate the biotransformation of ginsenoside Rb1. The metabolites were identified and confirmed using NMR analysis as gypenoside XVII and gypenoside LXXV. A mole yield of 95·4% gypenoside LXXV was obtained by enzymatic conversion (pH 5·0, temperature 50°C). Ginsenoside Rd was used to verify the transformation pathway under the same reaction condition. The product Compound K (mole yield 49·6%) proved a consecutive hydrolyses occurred at the C‐3 position of ginsenoside Rb1.

Conclusions

Strain CNU 120806 showed a high degree of specific β‐glucosidase activity to convert ginsenosides Rb1 and Rd to gypenoside LXXV and Compound K, respectively. The maximal activity of the purified glucosidase for ginsenosides transformation occurred at 50°C and pH 5·0. Compared with its activity against pNPG (100%), the β‐glucosidase exhibited quite lower level of activity against other aryl‐glycosides. Enzymatic hydrolysate, gypenoside LXXV and Compound K were produced by consecutive hydrolyses of the terminal and inner glucopyranosyl moieties at the C‐3 carbon of ginsenoside Rb1 and Rd, giving the pathway: ginsenoside Rb1→ gypenoside XVII → gypenoside LXXV; ginsenoside Rd→F2→Compound K, but did not hydrolyse the 20‐C, β‐(1‐6)‐glucoside of ginsenoside Rb1 and Rd.

Significance and Impact of the Study

The results showed an important practical application on the preparation of gypenoside LXXV. Additionally, this study for the first time provided a high efficient preparation method for gypenoside LXXV without further conversion, which also gives rise to a potential commercial enzyme application.  相似文献   

13.
Cheng LQ  Na JR  Bang MH  Kim MK  Yang DC 《Phytochemistry》2008,69(1):218-224
Ginseng saponin, the most important secondary metabolite in ginseng, has various pharmacological activities. Many studies have been directed towards converting major ginsenosides to the more active minor ginsenoside, Rg3. Due to the difficulty in preparing ginsenoside Rg3 enzymatically, the compound has been mainly produced by either acid treatment or heating. A microbial strain GS514 was isolated from soil around ginseng roots in a field and used for enzymatic preparation of the ginsenoside Rg3. Blast results of the 16S rRNA gene sequence of the strain GS514 established that the strain GS514 belonged to the genus Microbacterium. Its 16S rRNA gene sequence showed 98.7%, 98.4% and 96.1% identity with those of M. esteraromaticum, M. arabinogalactanolyticum and M. lacticum. Strain GS514 showed a strong ability to convert ginsenoside Rb1 or Rd into Rg3. Enzymatic production of Rg3 occurred by consecutive hydrolyses of the terminal and inner glucopyranosyl moieties at the C-20 carbon of ginsenoside Rb1 showing the biotransformation pathway: Rb1-->Rd-->Rg3.  相似文献   

14.
It was found that a lactase preparation from Penicillium sp. nearly quantitatively hydrolyzed ginsenosides Re and Rg1, which are major saponins in roots of Panax ginseng, to a minor saponin, 20(S)-ginsenoside Rh1 [6-O-beta-D-glucopyranosyl-20(S)-protopanaxatriol]. This is the first report on the enzymatic preparation of ginsenoside Rh1 with a high efficiency. This enzyme also readily hydrolyzed ginsenoside Rg2 to ginsenoside Rh1.  相似文献   

15.
Ginsenoside Rd, one of the ginsenosides with significant pharmaceutical activities, is getting more and more attractions on its biotransformation. In this study, a novel fungus mutant, the Aspergillus niger strain TH-10a, which can efficiently convert ginsenoside Rd from Rb1, was obtained through screening survival library of LiCl and ultraviolet (UV) irradiation. The transformation product ginsenoside Rd, generated by removing the outer glucose residue from the position C20 of ginsenoside Rb1, was identified through high-performance liquid chromatography (HPLC) analysis. Factors for the microbial culture and biotransformation were investigated in terms of the carbon sources, the nitrogen sources, pH values, and temperatures. This showed that maximum mycelia growth could be obtained at 28°C and pH 6.0 with cellobiose and tryptone as the carbon source and the nitrogen source, respectively. The highest transformation rate (~86%) has been achieved at 32°C and pH 5.0 with the feeding time of substrate 48 hr. Also, Aspergillus niger strain TH-10a could tolerate even 40 mg/mL ginseng root extract as substrate with 60% bioconversion rate after 72 hr of treatment at the optimal condition. Our results highlight a novel ginsenoside Rd transformation fungus and illuminate its potentially practical application in the pharmaceutical industries.  相似文献   

16.
王李礼  陈依军 《生物工程学报》2009,25(12):1789-1794
非水相酶催化反应是酶催化反应中的一个重要方面。非水相溶剂通常可增加底物溶解度,减少水相中的副反应,加快生物催化的速率和效率,在药物及药物中间体和食品等方面具有较大的应用价值。以下探讨了非水相体系对酶活力及酶促反应速率的影响因素,并阐述酶的化学修饰、固定化及定点突变对酶活力的影响,进一步分析无溶剂系统、反胶束、超临界流体及离子液体的不同溶剂体系对酶反应速率及催化效率的影响。此外,还列举一些非水相酶催化反应的应用实例。  相似文献   

17.
Ginsenosides Re and Rg1 were transformed by recombinant β-glucosidase (Bgp1) to ginsenosides Rg2 and Rh1, respectively. The bgp1 gene consists of 2,496?bp encoding 831 amino acids which have homology to the glycosyl hydrolase families 3 protein domain. Using 0.1?mg enzyme ml(-1) in 20?mM sodium phosphate buffer at 37°C and pH 7.0, the glucose moiety attached to the C-20 position of ginsenosides Re and Rg1, was removed: 1?mg ginsenoside Re ml(-1) was transformed into 0.83?mg Rg2?ml(-1) (100% molar conversion) after 2.5?h and 1?mg ginsenoside Rg1?ml(-1) was transformed into 0.6?mg ginsenoside Rh1?ml(-1) (78% molar conversion) in 15?min. Using Bgp1 enzyme, almost all initial ginsenosides Re and Rg1 were converted completely to ginsenosides Rg2 and Rh1. This is the first report of the conversion of ginsenoside Re to ginsenoside Rg2 and ginsenoside Rg1 to ginsenoside Rh1 using the recombinant β-glucosidase.  相似文献   

18.
Heterogeneity of ginsenosides is an interesting and important issue because those structure-similar secondary metabolites have different or even totally opposite pharmacological activities. In this work, a new enzyme UDP-glucose:ginsenoside Rd glucosyltransferase (UGRdGT), which catalyzes the formation of ginsenoside Rb1 from ginsenoside Rd [Biotechnol. Bioeng. 89: 444–52, 2005], was purified approximately 145-fold from suspended cells of Panax notoginseng with an overall yield of 0.2%. Purification to apparent homogeneity, as judged by SDS-PAGE, was successfully achieved by using sequential ammonium sulphate precipitation, anion-exchange chromatography and native PAGE. The enzyme had a molecular mass of 36 kDa, and its activity was optimal at pH 8.5 and 35 °C. The enzyme activity was enhanced by Mn2+, Ca2+ and Mg2+, but strongly inhibited by Zn2+, Hg2+, Co2+, Fe2+ and Cu2+. The apparent Km value for UDP-glucose and ginsenoside Rd was 0.32 and 0.14 mM, respectively. The biotransformation yield from ginsenoside Rd to Rb1 by UGRdGT in 50 mM Tris–HCl buffer at pH 8.5 and 35 °C was over 80%. This work provides a basis for further molecular study on the ginsenoside Rb1 biosynthesis by P. notoginseng cells and it is also useful for potential application to in vitro biotransformation from ginsenoside Rd to Rb1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号