首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
风疹病毒是披膜病毒科风疹病毒属的唯一成员,能够诱导细胞发生细胞凋亡。Ras-Raf-MEK-ERK和PI3KAkt信号通路是病毒增殖与细胞生存的必要通路,在细胞凋亡过程中起着必不可少的作用。p53蛋白和TAp63蛋白能够进入细胞核与DNA特异结合,抑制Bcl-2的表达,促进Bax的表达,导致线粒体内外膜间的物质(细胞色素C等)释放,进而引起caspase级联反应,最终导致细胞凋亡。本文从风疹病毒感染的细胞系,病毒感染导致的细胞病理改变和病毒诱导的细胞凋亡信号通路及其相关因子等方面对风疹病毒诱导细胞凋亡的分子机制进行了综述。  相似文献   

2.
肠道病毒 71型(enterovirus type 71,EV71)感染常可引起婴幼儿手足口病(hand,foot and mouth disease,HFMD),还可引起中枢神经系统并发症等重症,甚至死亡。研究认为,EV71诱发重症的原因主要与病毒感染诱导细胞程序性死亡(programmed cell death,PCD)及诱导细胞产生大量炎症因子有关。病毒感染可通过激活不同的信号通路触发细胞程序性死亡,主要包括含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase,caspase)依赖的细胞凋亡、细胞焦亡,以及非caspase依赖的细胞坏死性凋亡。本研究旨在探讨EV71感染诱导细胞程序性死亡的形态学和分子生物学特征,利用显微镜和免疫荧光技术检测EV71感染后细胞形态变化,JC-1染色检测感染后细胞线粒体膜电位变化,流式细胞术及Annexin V-FITC/PI双染法、乳酸脱氢酶释放量法检测感染细胞的细胞膜损伤程度,结合蛋白免疫印迹法检测病毒感染后细胞中多聚ADP核糖聚合酶[poly(ADP-ribose) polymerase,PARP]、caspase-9、caspase-3等凋亡因子,以及细胞焦亡关键效应蛋白Gasdermin D、坏死性凋亡效应蛋白MLKL的磷酸化情况。结果显示,EV71感染后细胞主要呈现凋亡特征,并伴随少量细胞坏死。与细胞凋亡相关的PARP被剪切,caspase-9和caspase-3等相关因子被激活。经泛caspase抑制剂处理后,细胞程序性死亡被抑制,但仍有部分细胞坏死。结果提示,EV71感染以细胞凋亡为主,也可能存在非caspase依赖的细胞程序性死亡。  相似文献   

3.
线粒体途径是细胞凋亡的重要途径之一. 在特定的刺激下,例如高糖条件,可以通过caspase依赖性和非依赖性两种途径诱导多种细胞凋亡.但线粒体凋亡途径在高糖引起成骨细胞凋亡中所起的作用,目前尚不清楚.本研究证明,高糖可以通过线粒体凋亡途径诱导成骨细胞凋亡.Annexin V-FITC/PI流式细胞学检测显示,高糖可诱导MC3T3-E1细胞凋亡.Western印迹检测发现,不同浓度D-葡萄糖(11,22,33 mmol/L)可以引起线粒体中Bax蛋白表达的增加,使Bax蛋白由细胞质中易位到线粒体,激活了线粒体凋亡途径.JC-1荧光探针检测证实,高糖处理成骨细胞后,线粒体膜电位明显降低,表明线粒体途径被激活.而细胞质中的细胞色素c、凋亡诱导因子(AIF)表达增加,细胞色素c和AIF从线粒体中释放到细胞质中,释放到细胞质中的细胞色素c使caspase-3、caspase-9剪切活化,从而激活了caspase依赖性凋亡途径.因此,线粒体凋亡途径可能是高糖诱导成骨细胞凋亡过程中一个重要的途径.  相似文献   

4.
细胞色素C在apoptin诱导宫颈癌Hela细胞凋亡中的作用   总被引:1,自引:0,他引:1  
目的研究肿瘤特异性凋亡基因(apoptin)在诱导Hela细胞凋亡中的信号转导机制。方法用含有apoptin基因的真核表达载体瞬间转染体外培养的Hela细胞;采用MTT法检测Hela细胞的凋亡;以比色法检测caspase-8和caspase-3的相对活性;Western blotting检测凋亡细胞中细胞色素C的表达量。结果 MTT法证明ap-optin基因瞬间转染的Hela细胞凋亡率明显高于其他各组(P〈0.01);caspase-3的活性升高,但caspase-8活性没有明显变化;细胞色素C释放量明显增多。结论 Apoptin基因可能通过促进线粒体释放细胞色素C激活caspase-3,进而诱导Hela细胞凋亡。  相似文献   

5.
线粒体PT孔与细胞凋亡   总被引:4,自引:0,他引:4  
线粒体在细胞凋亡中有着重要作用,而线粒体PT孔开放是线粒体因素导致细胞凋亡的关键。促凋亡因素通过诱导PT孔的形成,导致线粒体膜电位丧失,使细胞色素C和凋亡诱导因子等释放进入细胞浆,启动细胞凋亡程序,诱导细胞凋亡。本文就目前线粒体PT孔的结构、可能的凋控机制及其在细胞凋亡中作用的研究进展进行综述。  相似文献   

6.
线粒体与细胞凋亡调控   总被引:12,自引:0,他引:12  
细胞凋亡是一个受到一系列相关基因严格调控的细胞死亡过程。线粒体是细胞凋亡调控的活动中心。在凋亡因子的刺激下,线粒体释放出不同促凋亡因子如细胞色素C、Smac/Diablo等,激活细胞内凋亡蛋白酶Caspase。我们发现,活化后的Caspase可以反过来作用于线粒体,引发更大量线粒体细胞色素c的释放,构成细胞色素c释放的正反馈调节机制,从而导致电子传递链的中断、膜电势的丧失、胞内ROS的升高以及线粒体产生ATP功能的完全丧失。Bcl-2家族蛋白在细胞色素C释放和细胞凋亡调控中起关键作用。  相似文献   

7.
BAK蛋白从属于BCL-2家族,是细胞凋亡途径中的关键蛋白。BAK蛋白在凋亡信号的刺激下被激活,并在线粒体上集聚成簇后诱导细胞色素c等促凋亡物质释放,通过caspase级联反应放大凋亡信号,最终诱导细胞死亡。目前的BAK研究普遍用于针对癌细胞凋亡逃逸及病毒对机体细胞免疫的逃逸过程,而病毒等病原体与BAK之间的作用机制、影响胞内凋亡和炎症通路的激活以及炎性因子活化的研究较少。因此对BAK蛋白结构、功能和BAK可能介导的相关通路进行介绍,并对其在病毒感染研究中的作用进展进行了分析,以期为促凋亡蛋白BAK在病毒感染中作用的深入研究提供一些理论基础。  相似文献   

8.
Hu HL  Zhang ZX  Zhao JP  Wang T  Xu YJ 《生理学报》2006,58(3):262-268
为了探讨线粒体ATP敏感钾通道(mitochondrial ATP-sensitive K^+channel,mito KATP)和线粒体膜电位(△ψm)在细胞缺氧信号转导中的作用以及对缺氧肺动脉平滑肌细胞中细胞色素C在细胞内的分布及细胞增殖的影响,本实验将人肺动脉平滑肌细胞进行常氧或24h缺氧培养,并将标本分为六组:(1)对照组;(2)mito KATP,开放剂diazoxide组;(3)mito KATP阻断剂5-HD组;(4)24h缺氧组;(5)24h缺氧+diazoxide组;(6)24h缺氧+5-HD组。利用激光共聚焦显微镜成像法检测△、ψm;线粒体/胞浆成分分离试剂盒(Bio Vision)分离线粒体和胞浆成分后,Western blot检测两者细胞色素C;Western blot检测细胞中caspase-9的蛋白表达量;MTT法及PI染色后流式细胞仪检测细胞增殖情况。结果显示:(1)diazoxide作用24h后,R-123荧光明显增强,胞浆细胞色素C与线粒体细胞色素C的比值明显降低,caspase-9的蛋白表达显著减少,细胞增殖明显增多、凋亡减少,与正常对照组相比较,均P〈0.05;而5-HD作用24h与正常对照组比较,上述指标无明显变化(P〉0.05)。(2)缺氧24h组,结果与diazoxide组相似,R-123荧光明显增强,胞浆细胞色素C与线粒体细胞色素C的比值明显降低,caspase-9的蛋白表达显著减少,细胞增殖明显增多、凋亡减少,与正常对照组相比较,均P〈0.05;24h缺氧+diazoxide组与缺氧组相比较,R-123荧光明显增强,胞浆细胞色素C与线粒体细胞色素C的比值明显降低,caspase-9的蛋白表达显著减少,细胞增殖明显增多、凋亡减少(P〈0.05);而24h缺氧+5-HD组与缺氧组比较,R-123荧光明显降低,胞浆细胞色素C与线粒体细胞色素C的比值明显升高,caspase-9的蛋白表达显著增加,细胞增殖明显减少、凋亡增多(P〈0.05)。上述实验结果提示,缺氧可以引起mito KATP,的开放以及△ψm的去极化,并进而抑制细胞色素C从线粒体释放到胞浆,抑制线粒体凋亡途径,从而参与并影响肺动脉高压的发生、发展。  相似文献   

9.
本研究旨在观察毛钩藤碱对人乳腺癌细胞的抑制作用,并探讨其分子机制。选取人正常乳腺上皮MCF-10A细胞、乳腺癌MCF-7细胞和MDA-MB-231细胞作为研究对象,采用CCK-8法检测细胞活性,采用流式细胞术检测细胞凋亡和线粒体膜电位(mitochondrial membrane potential,MMP),采用Western blot检测Bcl-2、Bax、cleaved-caspase 9、cleaved-caspase 3以及胞浆中细胞色素C(cytochrome C,Cyt C)的蛋白水平。结果显示,毛钩藤碱可显著降低MCF-7细胞和MDA-MB-231细胞存活率,且该作用呈时间和剂量依赖性(P0.05);毛钩藤碱作用MCF-7细胞和MDA-MB-231细胞48 h的IC50分别为447.79和179.06μmol/L;毛钩藤碱可诱导MDA-MB-231细胞发生凋亡和MMP去极化(P0.05),促进线粒体释放Cyt C(P0.05),激活caspase 9和caspase 3(P0.05),这些作用均可被线粒体通透性转换孔(mitochondrial permeability transition pore,MPTP)特异性阻断剂环孢素A(cyclosporin A,CsA)显著抑制(P0.05);此外,毛钩藤碱显著下调MDA-MB-231细胞Bcl-2蛋白水平并上调Bax蛋白水平(P0.05)。以上结果提示,毛钩藤碱可诱导MDA-MB-231细胞发生凋亡,这可能与其调低Bcl-2/Bax蛋白比值,从而引起MPTP持续开放和Cyt C释放,最终导致caspase 9和caspase 3活化有关。  相似文献   

10.
非正常生理浓度的Ca^2 和氧化应激等刺激线粒体渗透性转变孔(mitochondria permeability transition pore,MPTP)开放,使线粒体形态功能发生改变,被释放的细胞色素c和凋亡诱导因子(apoptosisinducing factor,AIF)等参与到caspase信号通路中,诱导细胞发生凋亡。本文在MPTP的主要组成成分、两种不同的结构功能模型、抑制剂对MPTP的抑制机制和缺血,再灌注及缺血预适应对MPTP开放的影响等方面的研究进展作一综述。  相似文献   

11.
We recently reported translocation and activation of Akt in cardiac mitochondria. This study was to determine whether activation of Akt in mitochondria could inhibit apoptosis of cardiac muscle cells. Insulin stimulation induced translocation of phosphorylated Akt to the mitochondria in primary cardiomyocytes. A mitochondria-targeted constitutively active Akt was overexpressed via adenoviral vector and inhibited efflux of cytochrome c and apoptosis-inducing factor from mitochondria to cytosol and partially prevented loss of mitochondria cross-membrane electrochemical gradient. Activation of caspase 3 was suppressed in the cardiomyocytes transduced with mitochondria-targeted active Akt, whereas a mitochondria-targeted dominant negative Akt enhanced activation of caspase 3. Terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay showed that mitochondrial activation of Akt significantly reduced the number of apoptotic cells. When the endogenous Akt was abolished by LY294002, the antiapoptotic actions of mitochondrial Akt remained effective. These experiments suggested that mitochondrial Akt suppressed apoptosis signaling independent of cytosolic Akt in cardiac muscle cells.  相似文献   

12.
Rottlerin is a widely selective protein kinase C delta (PKCdelta) inhibitor isolated from Mallotus philippinensis. It shown to be effective against several human tumor cell lines and in potentiating chemotherapy-induced cytotoxcicity. Using the trypan blue exclusion assay, we demonstrated that rottlerin reduced the viability in a dose- and time-dependent manner of human leukemia HL60 cells, human acute T cell leukemia Jurkat cells and mouse macrophage RAW 264.7 cells. Rottlerin caused apoptosis and the apaptotic processing was inhibited by a caspase inhibitor, z-VAD-fmk, in these haematopoietic cells. The apoptosis-inducing activities were determined by nuclear condensation, sub-G1 appearance, DNA fragmentation, loss of mitochondrial membrane potential (Deltapsim), release of mitochondrial cytochrome c into cytoplasm and proteolytic activation of caspase 9 and 3. Expression of PKCdelta and Bcl-2 protein inhibited Deltapsim change and repressed cell death. These studies suggest that the cytotoxic effects of rottlerin through inhibition of PKCdelta cause mitochondrial dysfunction, cytochrome c release from mitochondria into cytoplasm and the activation of caspases' cascade.  相似文献   

13.
We investigated the influence of cytochrome c on apoptosis induced by Anagrapha (Syngrapha) falcifera multiple nuclear polyhedrosis virus (AfMNPV). Microscopic observation revealed that infection of SL-1 cells with AfMNPV resulted in apoptosis, displaying apoptotic bodies in fluorescent-stained nuclei of AfMNPV-infected SL-1cells. Western blot analysis demonstrated that AfMNPV-induced apoptosis in insect SL-1 cells was significantly inhibited by cyclosporin A which blocked a translocation of cytochrome c from the mitochondria to the cytosol. As determined by using AC-DEVD-AFC as substrate, the activity of caspase-3 in AfMNPV-induced cells was detected as early as 4h post infection, gradually increased with time extension, and reached a highest level after 16h of infection. However, activity of caspase-3 in apoptotic cells decreased in the presence of cyclosporin A (30microM), indicating that activation of caspase-3 in SfaMNPV-induced cells was dependent on the release of cytochrome c from the mitochondria. In addition, cyclosporin A could markedly inhibit mitochondrial transmembrane potential (DeltaPsim) disruption in undergoing apoptotic cells. These data indicate that cytochrome c plays a key role in AfMNPV-induced apoptosis in S. litura cells and may be required for caspase activation during the induction of apoptosis.  相似文献   

14.
Phospholipid oxidation products accumulate in the necrotic core of atherosclerotic lesions, in apoptotic cells, and circulate in oxidized low density lipoprotein. Phospholipid oxidation generates toxic products, but little is known about which specific products are cytotoxic, their receptors, or the mechanism(s) that induces cell death. We find the most common phospholipid oxidation product of oxidized low density lipoprotein, phosphatidylcholine with esterified sn-2-azelaic acid, induced apoptosis at low micromolar concentrations. The synthetic ether phospholipid hexadecyl azelaoyl phosphatidylcholine (HAzPC) was rapidly internalized, and overexpression of PLA2g7 (PAF acetylhydrolase) that specifically hydrolyzes such oxidized phospholipids suppressed apoptosis. Internalized HAzPC associated with mitochondria, and cytochrome c, and apoptosis-inducing factor escaped from mitochondria to the cytoplasm and nucleus, respectively, in cells exposed to HAzPC. Isolated mitochondria exposed to HAzPC rapidly swelled and released cytochrome c and apoptosis-inducing factor. Other phospholipid oxidation products induced swelling, but HAzPC was the most effective and was twice as effective as its diacyl homolog. Cytoplasmic cytochrome c completes the apoptosome, and activated caspase 9 and 3 were present in cells exposed to HAzPC. Irreversible inhibition of caspase 9 blocked downstream caspase 3 activation and prevented apoptosis. Mitochondrial damage initiated this apoptotic cascade, because overexpression of Bcl-X(L), an anti-apoptotic protein localized to mitochondria, blocked cytochrome c escape and apoptosis. Thus, exogenous phospholipid oxidation products target intracellular mitochondria to activate the intrinsic apoptotic cascade.  相似文献   

15.
Many apoptotic signaling pathways are directed to mitochondria, where they initiate the release of apoptogenic proteins and open the proposed mitochondrial permeability transition (PT) pore that ultimately results in the activation of the caspase proteases responsible for cell disassembly. BNIP3 (formerly NIP3) is a member of the Bcl-2 family that is expressed in mitochondria and induces apoptosis without a functional BH3 domain. We report that endogenous BNIP3 is loosely associated with mitochondrial membrane in normal tissue but fully integrates into the mitochondrial outer membrane with the N terminus in the cytoplasm and the C terminus in the membrane during induction of cell death. Surprisingly, BNIP3-mediated cell death is independent of Apaf-1, caspase activation, cytochrome c release, and nuclear translocation of apoptosis-inducing factor. However, cells transfected with BNIP3 exhibit early plasma membrane permeability, mitochondrial damage, extensive cytoplasmic vacuolation, and mitochondrial autophagy, yielding a morphotype that is typical of necrosis. These changes were accompanied by rapid and profound mitochondrial dysfunction characterized by opening of the mitochondrial PT pore, proton electrochemical gradient (Deltapsim) suppression, and increased reactive oxygen species production. The PT pore inhibitors cyclosporin A and bongkrekic acid blocked mitochondrial dysregulation and cell death. We propose that BNIP3 is a gene that mediates a necrosis-like cell death through PT pore opening and mitochondrial dysfunction.  相似文献   

16.
A human milk fraction containing multimeric alpha-lactalbumin (MAL) is able to kill cells via apoptosis. MAL is a protein complex of a folding variant of alpha-lactalbumin and lipids. Previous results have shown that upon treatment of transformed cells, MAL localizes to the mitochondria and cytochrome c is released into the cytosol. This is followed by activation of the caspase cascade. In this study, we further investigated the involvement of mitochondria in apoptosis induced by the folding variant of alpha-lactalbumin. Addition of MAL to isolated rat liver mitochondria induced a loss of the mitochondrial membrane potential (Delta Psi(m)), mitochondrial swelling and the release of cytochrome c. These changes were Ca(2+)-dependent and were prevented by cyclosporin A, an inhibitor of mitochondrial permeability transition. MAL also increased the rate of state 4 respiration in isolated mitochondria by exerting an uncoupling effect. This effect was due to the presence of fatty acids in the MAL complex because it was abolished completely by BSA. BSA delayed, but failed to prevent, mitochondrial swelling as well as dissipation of Delta Psi(m), indicating that the fatty acid content of MAL facilitated, rather than caused, these effects. Similar results were obtained with HAMLET (human alpha-lactalbumin made lethal to tumour cells), which is native alpha-lactalbumin converted in vitro to the apoptosis-inducing folding variant of the protein in complex with oleic acid. Our findings demonstrate that a folding variant of alpha-lactalbumin induces mitochondrial permeability transition with subsequent cytochrome c release, which in transformed cells may lead to activation of the caspase cascade and apoptotic death.  相似文献   

17.
Swainsonine (SW) is an indolizidine alkaloid isolated from a number of poisonous plants. We have previously reported that SW inhibited luteal cell progesterone production by inducing caprine luteal cell apoptosis in vitro; however, the molecular mechanism of this phenomenon remains unclear. In this study, SW‐treated luteal cells showed apoptosis characteristics, including nuclear fragmentation, DNA ladder formation, and phosphatidylserine externalization. Further studies showed that SW activated caspase‐9 and caspase‐3, which subsequently cleaved poly(ADP‐ribose) polymerase. SW also increased in Bax/BcL‐2 ratios, promoted Bax translocation from the cytosol to mitochondria, and triggered the release of cytochrome c from mitochondria into the cytoplasm. However, Fas and Fas ligand induction or caspase‐8 activity did not appear any significant changes. Additional analysis also showed that pan‐caspase inhibitor, caspase‐9 inhibitor, or caspase‐3 inhibitor almost completely protected the cells from SW‐induced apoptosis, but not caspase‐8 inhibitor. Overall, these data demonstrated that SW induced luteal cells apoptosis through a mitochondrial‐mediated caspase‐dependent pathway.  相似文献   

18.
Cytochrome c release from mitochondria induces caspase activation in cytosols; however, it is unclear whether the redox state of cytosolic cytochrome c can regulate caspase activation. By using cytosol isolated from mammalian cells, we find that oxidation of cytochrome c by added cytochrome oxidase stimulates caspase activation, whereas reduction of cytochrome c by added tetramethylphenylenediamine (TMPD) or yeast lactate dehydrogenase/cytochrome c reductase blocks caspase activation. Scrape-loading of cells with this reductase inhibited caspase activation induced by staurosporine. Similarly, incubating intact cells with ascorbate plus TMPD to reduce intracellular cytochrome c strongly inhibited staurosporine-induced cell death, apoptosis, and caspase activation but not cytochrome c release, indicating that cytochrome c redox state can regulate caspase activation. In homogenates from healthy cells cytochrome c was rapidly reduced, whereas in homogenates from apoptotic cells added cytochrome c was rapidly oxidized by some endogenous process. This oxidation was prevented if mitochondria were removed from the homogenate or if cytochrome oxidase was inhibited by azide. This suggests that permeabilization of the outer mitochondrial membrane during apoptosis functions not just to release cytochrome c but also to maintain it oxidized via cytochrome oxidase, thus maximizing caspase activation. However, this activation can be blocked by adding TMPD, which may have some therapeutic potential.  相似文献   

19.
The events that precipitate cell death and the stress proteins responsible for cytoprotection during ATP depletion remain elusive. We hypothesize that exposure to metabolic inhibitors damages mitochondria, allowing proapoptotic proteins to leak into the cytosol, and suggest that heat stress-induced hsp72 accumulation prevents mitochondrial membrane injury. To test these hypotheses, renal epithelial cells were transiently ATP depleted with sodium cyanide and 2-deoxy-D-glucose in the absence of medium dextrose. Recovery from ATP depletion was associated with the release into the cytosol of cytochrome c and apoptosis-inducing factor (AIF), proapoptotic proteins that localize to the intermitochondrial membrane space. Concomitant with mitochondrial cytochrome c leak, a seven- to eightfold increase in caspase 3 activity was observed. In controls, state III mitochondrial respiration was reduced by 30% after transient exposure to metabolic inhibitors. Prior heat stress preserved mitochondrial ATP production and significantly reduced both cytochrome c release and caspase 3 activation. Despite less cytochrome c release, prior heat stress increased binding between cytochrome c and hsp72. The present study demonstrates that mitochondrial injury accompanies exposure to metabolic inhibitors. By reducing outer mitochondrial membrane injury and by complexing with cytochrome c, hsp72 could inhibit caspase activation and subsequent apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号