首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
杨仲毅  倪晔  孙志浩 《生物工程学报》2009,25(12):1779-1783
近年来工业生物技术飞速发展,酶学和生物催化领域也取得突破性进展,特别在酶在非水相中活性及稳定性研究,耐溶剂生物催化剂的筛选、构建、修饰和改造,生物相容性和环境相容性好的绿色介质等方面取得了较大的进展。最近的研究热点和未来几年的研究方向主要为:基于基因组信息的耐溶剂酶的虚拟筛选和构建;基于自然界筛选新酶基因的耐溶剂酶重构和改造;离子液体等环境友好的绿色介质系统等几个方面。  相似文献   

2.
曲戈  袁波  孙周通 《生物工程学报》2022,38(11):4068-4080
作为合成生物学与绿色生物制造等领域的底层核心技术,蛋白理性设计可有效解决天然功能元件性能不足等共性挑战,创制高性能人工酶元件。值此天津工业生物研究所(Tianjin Institute of Industrial Biotechnology, TIB)创立10周年之际,文中回顾了研究所在工业蛋白理性设计领域的系列重要工作进展。从酶设计方法学研究、新酶反应设计到生物催化应用等方面进行了分析讨论,并展望了本领域未来发展方向。望借此搭建学术界和产业界与酶理性设计的桥梁,促进新技术、新策略的开发应用,加速融合人工酶的基础研究与产业应用,推动我国生物制造领域的科技创新升级。  相似文献   

3.
植物三萜化合物是一类具有6个C5异戊二烯单元的高附加值天然化合物,具有抗炎、护肝、抗肿瘤、抗氧化和降血压等重要药理活性。在三萜化合物生物合成过程中,细胞色素P450酶通过引入羟基、羧基、羰基以及环氧基等官能团,为丰富三萜结构的多样性起到了重要的作用。然而,目前P450酶底物催化特异性机制仍不清晰,异源底盘细胞中表达率低、与细胞色素氧化还原酶(CPR)的适配性差限制了其在植物三萜化合物微生物异源合成中的应用。本文系统地介绍了植物三萜化合物的合成途径、P450酶的催化系统组成和催化机制。通过P450酶的理性与非理性的分子改造,P450酶及其CPR的适应性匹配以及关键代谢途径的区室化研究,以期为P450酶在高效合成三萜化合物的应用提供研究思路。  相似文献   

4.
张锟  曲戈  刘卫东  孙周通 《生物工程学报》2019,35(10):1806-1818
工业酶是绿色生物制造的"芯片",支撑着下游数十倍甚至百倍的产业。解析工业酶结构与功能关系是对其设计改造并应用于工业生产的基础。近年来随着蛋白结构解析技术和计算模拟技术的发展,酶结构与功能的构效关系得到更加深刻的认识,使得酶理性设计,甚至是从头设计成为可能。文中围绕酶结构的可塑性及其催化功能的多样性,综述工业酶结构与功能构效关系的研究进展及应用,并展望该领域的未来发展前景。  相似文献   

5.
微生物脂肪酶稳定性研究进展   总被引:1,自引:0,他引:1  
徐碧林  朱庆 《微生物学通报》2020,47(6):1958-1972
脂肪酶广泛应用于食品、药物、生物燃料、诊断、生物修复、化学品、化妆品、清洁剂、饲料、皮革和生物传感器等工业领域,微生物脂肪酶是商品化脂肪酶的重要来源。高温、酸性、碱性和有机溶剂等恶劣的工业生产环境使得脂肪酶的进一步工业应用受到限制,获取稳定性好的脂肪酶成为打破这一限制的关键环节。本文重点对提高微生物脂肪酶稳定性的策略进行了综述:挖掘极端微生物脂肪酶资源;利用定向进化、理性设计和半理性设计等蛋白质工程策略改造脂肪酶;利用物理吸附、封装、共价结合和交联等酶的固定化技术提高脂肪酶的稳定性;利用物理/化学修饰、表面展示以及多种改良策略相结合提高脂肪酶的稳定性。结合作者前期对酶工程的研究发现,新型酶催化剂的获得应该基于明确的设计思路,结合多种改造方法,基于定向进化-理性设计、定向进化-半理性设计、蛋白质工程-酶的固定化、蛋白质工程-物理/化学修饰、酶的固定化-物理/化学修饰等组合改造,比单一的改造方法具有更高的效率。  相似文献   

6.
功能酶被广泛应用于食品、化工、医药等领域,但却容易受高温环境限制,导致催化效率降低。以分子改造为目的的蛋白质工程技术是解决这一问题的关键环节,其能够对酶结构和功能进行改造,获得热稳定性好的工业酶。传统的定向进化方法只能依靠随机突变进行人工筛选,具有效率低、针对性差等缺点;理性设计作为酶热稳定性改造的主要方法,可借助各种计算机程序和软件预测潜在突变位点,但其要求对酶的催化机制、热稳定性机制有深入了解。对于大多数天然酶而言,酶的序列和晶体结构是最容易获取的信息,也是预测功能的重要基础。从酶的序列和晶体结构入手,重点介绍了共识突变、基于序列偏好性的突变、截短柔性区域、优化分子内相互作用力、刚化催化活性区域及计算机辅助筛选柔性位点等常用策略,这些策略具有筛选效率高、改造准确性高、实用性强等优点。结合多种酶的热稳定性改造案例进行分析,旨在为不同酶的改造策略选择提供有效参考,同时也为工业酶的耐热性研究提供理论支持。  相似文献   

7.
褐藻胶是由β-D-甘露糖醛酸(M)以及α-L-古罗糖醛酸(G)2种单体组成的酸性多糖。褐藻胶裂解酶作为多糖裂解酶的一种,可以温和高效地将褐藻胶降解为褐藻寡糖,并用于食品、医药和农业领域。然而天然来源的褐藻胶裂解酶通常存在活性不高、催化效率低以及热稳定性差等缺点,在一定程度上限制了其工业化应用潜力。近年来分子改造策略已经开始大量应用于褐藻胶裂解酶,使得褐藻胶裂解酶的应用性能得到极大提升。本文对已报道的褐藻胶裂解酶结构与催化机制进行总结,对改善热稳定性、提高催化效率、改变底物分布等性质的褐藻胶裂解酶分子改造策略如理性设计、定向进化、结构域截短与重组等进行系统分析与综述,并展望了未来褐藻胶裂解酶分子改造的发展方向。  相似文献   

8.
工业催化用酶已经成为现代生物制造技术的核心"芯片"。不断设计和研发新型高效的酶催化剂是发展工业生物技术的关键。工业催化剂创新设计的科学基础是对酶与底物的相互作用、结构与功能关系及其调控机制的深入剖析。随着生物信息学和智能计算技术的发展,可以通过计算的方法解析酶的催化反应机理,进而对其结构的特定区域进行理性重构,实现酶催化性能的定向设计与改造,促进其工业应用。聚焦工业酶结构-功能关系解析的计算模拟和理性设计,已成为工业酶高效创制改造不可或缺的关键技术。本文就各种计算方法和设计策略以及未来发展趋势进行简要介绍和讨论。  相似文献   

9.
融合酶技术是酶的改造技术之一。应用融合酶技术还可以创造出多功能的新酶,这些新酶有望应用于食品、化工等领域。目前研究表明,融合酶在低聚糖制备,生物燃料,生物材料,氨基酸发酵以及生物传感器等领域极具应用前景。融合酶的构建技术有理性设计和非理性设计,这两种技术各有利弊。整理了近年融合酶在以上领域中的研究成果,对融合酶的工业应用进行讨论。  相似文献   

10.
随着近十几年来工业生物技术的发展,有机化合物的生物催化也取得了飞速的进步.近几年的研究集中在:新生物催化剂的筛选和酶的定向改造;非水相生物催化中酶有机溶剂耐受性的增强和非传统介质的应用;生物催化在手性化合物,药物等精细化学品领域的应用;组合生物催化作为组合化学和生物催化相结合而成的一个新技术生长点,并取得一定的进展,为新药的开发提供一种切实可行的方法.  相似文献   

11.
A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products.  相似文献   

12.
酶是高效的生物催化剂,在生物技术领域有广泛的应用。然而,不可再生催化的高成本和酶的有效成分分离回收,是实现大规模工业化应用需要解决的关键问题。磁性纳米粒子(magnetic nanoparticles,MNPs)具有优异的磁回收性质。通过设计和制备功能化MNPs作为固定化酶的多功能载体,是解决这一问题的有效途径之一,可为酶的工业化大规模应用提供条件。近年来,功能化磁性纳米粒子在酶的固定化领域基于载体性质、固定化方法和应用有广泛研究。文中重点介绍了近年来各种功能化磁性纳米载体,特别是Fe3O4纳米粒子,在固定化酶中的应用。根据功能化试剂的差异分类,实例讨论了不同功能化修饰的磁性纳米载体对酶的固定化,包括硅烷修饰的磁性纳米载体、有机聚合物修饰的磁性纳米载体、介孔材料修饰的磁性纳米载体以及金属-有机骨架材料(metal-organic framework,MOF)修饰的磁性纳米载体。同时,结合可持续工业催化的发展要求,对磁性复合载体固定化酶的发展前景进行了展望。  相似文献   

13.
持续性内切纤维素酶(Processive endoglucanase)是一类新发现的双功能纤维素水解酶,既符合内切酶的作用特征,又具有外切酶的持续催化能力,可高效降解纤维素生成小分子寡糖。这类酶通常具有模块化结构,碳水化合物结合模块(CBM)对酶的持续催化活性及底物结合能力表现出不同的影响。综述了该领域相关研究的最新进展,分析了持续性内切酶潜在的研究方向及工业化应用的前景。  相似文献   

14.
Solvent-tolerant microbes are a newly emerging class that possesses the unique ability to thrive in the presence of organic solvents. Their enzymes adapted to mediate cellular and metabolic processes in a solvent-rich environment and are logically stable in the presence of organic solvents. Enzyme catalysis in non-aqueous/low-water media is finding increasing applications for the synthesis of industrially important products, namely peptides, esters, and other trans-esterification products. Solvent stability, however, remains a prerequisite for employing enzymes in non-aqueous systems. Enzymes, in general, get inactivated or give very low rates of reaction in non-aqueous media. Thus, early efforts, and even some recent ones, have aimed at stabilization of enzymes in organic media by immobilization, surface modifications, mutagenesis, and protein engineering. Enzymes from solvent-tolerant microbes appear to be the choicest source for studying solvent-stable enzymes because of their unique ability to survive in the presence of a range of organic solvents. These bacteria circumvent the solvent’s toxic effects by virtue of various adaptations, e.g. at the level of the cytoplasmic membrane, by degradation and transformation of solvents, and by active excretion of solvents. The recent screening of these exotic microbes has generated some naturally solvent-stable proteases, lipases, cholesterol oxidase, cholesterol esterase, cyclodextrin glucanotransferase, and other important enzymes. The unique properties of these novel biocatalysts have great potential for applications in non-aqueous enzymology for a range of industrial processes.  相似文献   

15.
Lipases (triacylglycerol ester hydrolases, EC 3.1.1.3) are ubiquitous enzymes that catalyze the breakdown of fats and oils with subsequent release of free fatty acids, diacylglycerols, monoglycerols and glycerol. Besides this, they are also efficient in various reactions such as esterification, transesterification and aminolysis in organic solvents. Therefore, those enzymes are nowadays extensively studied for their potential industrial applications. Examples in the literature are numerous concerning their use in different fields such as resolution of racemic mixtures, synthesis of new surfactants and pharmaceuticals, oils and fats bioconversion and detergency applications. However, the drawbacks of the extensive use of lipases (and biocatalysts in general) compared to classical chemical catalysts can be found in the relatively low stability of enzyme in their native state as well as their prohibitive cost. Consequently, there is a great interest in methods trying to develop competitive biocatalysts for industrial applications by improvement of their catalytic properties such as activity, stability (pH or temperature range) or recycling capacity. Such improvement can be carried out by chemical, physical or genetical modifications of the native enzyme. The present review will survey the different procedures that have been developed to enhance the properties of lipases. It will first focus on the physical modifications of the biocatalysts by adsorption on a carrier material, entrapment or microencapsulation. Chemical modifications and methods such as modification of amino acids residues, covalent coupling to a water-insoluble material, or formation of cross-linked lipase matrix, will also be reviewed. Finally, new and promising methods of lipases modifications by genetic engineering will be discussed.  相似文献   

16.
聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)是应用最广泛的合成聚酯之一。由于PET不易降解,在环境中积累,对陆地、水生生态系统以及人类健康构成严重威胁。基于生物酶催化的生物降解策略为PET回收利用提供了一种绿色途径,在过去20年间,已发现了多种PET水解酶,并通过蛋白质工程等手段来改善这些酶的降解性能,但是目前仍未找到适合大规模工业应用的PET水解酶。利用传统的检测方法筛选PET水解酶是一个缓慢而复杂的过程。为了促进PET酶法回收的工业化应用,需要研发高效的检测方法。近年来,研究人员开发了多种表征PET水解酶的分析方法。本文总结了可用于筛选PET水解酶的检测方法,如高效液相色谱法、紫外吸光度法和荧光激活液滴分选法等,并对其在筛选PET水解酶的应用方面进行了展望。  相似文献   

17.
Haloacid dehalogenases catalyse the cleavage of carbon − halogen bonds in halogenated organic acids. These enzymes are of high interest due to their potential applications in bioremediation and in synthesis of various industrial products. The efficiency of dehalogenases in various applications can be enhanced, provided that their molecular catalytic mechanisms are fully understood. Herein, we review the current understanding of enzymatic haloacid dehalogenation mechanisms and the important amino acid residues that are necessary for the enzyme’s catalysis, with special emphasis on haloacid dehalogenases produced by Rhizobium sp.  相似文献   

18.

The speed of sequencing of microbial genomes and metagenomes is providing an ever increasing resource for the identification of new robust biocatalysts with industrial applications for many different aspects of industrial biotechnology. Using ‘natures catalysts’ provides a sustainable approach to chemical synthesis of fine chemicals, general chemicals such as surfactants and new consumer-based materials such as biodegradable plastics. This provides a sustainable and ‘green chemistry’ route to chemical synthesis which generates no toxic waste and is environmentally friendly. In addition, enzymes can play important roles in other applications such as carbon dioxide capture, breakdown of food and other waste streams to provide a route to the concept of a ‘circular economy’ where nothing is wasted. The use of improved bioinformatic approaches and the development of new rapid enzyme activity screening methodology can provide an endless resource for new robust industrial biocatalysts.This mini-review will discuss several recent case studies where industrial enzymes of ‘high priority’ have been identified and characterised. It will highlight specific hydrolase enzymes and recent case studies which have been carried out within our group in Exeter.

  相似文献   

19.
α-Amylase is an important amylolytic enzyme participating in hydrolysis of starch, the most common carbohydrate in nature. Compared to plant and animal origins, microbial α-amylase is the most popular source of industrial α-amylase. As such, high productive and favourable α-amylases for wider range of applications are highly sought after demands. The expression of α-amylase is regulated by its structural gene, amyR, DegU-P, PrsA lipoprotein, cutinase and other similar flanking genes, components of gene expression regulatory systems, molecular chaperones and enzymes. Moreover, the characteristics of α-amylase are closely related to the structures of constitutive domains and conserved regions, particularly the functional regions such as Ca2+-binding sites, non-catalytic carbohydrate-binding modules and surface-binding sites. Recent production of α-amylase based on genetic engineering and academic researches focused on mechanisms of catalysis greatly benefit from these biomolecular studies. Despite rapid developments, no reviews have systematically summarized these fundamental biomolecular studies. This review outlines microbial α-amylase at gene and structure levels by covering these significant aspects. The computer analytical tools are also reported, especially frequently used databases. A deeper understanding of the biomolecular basis of microbial α-amylase will significantly pave greater opportunities for industrial α-amylase and open our minds towards its related or even other enzymes.  相似文献   

20.
合成生物学技术的快速发展极大提升了微生物细胞工厂的构建能力,为化学品的绿色高效生产提供了重要策略。然而,微生物细胞难以耐受高强度工业环境、抗逆性差,成为了限制其生产性能的关键因素。适应性进化是一种人为施加定向选择压力,使微生物经过长期或短期驯化,获得适应特定环境的表型或生理性能的重要方法。近年来,随着微流控、生物传感器、组学分析等技术的发展,适应性进化为提升微生物细胞在工业环境下的生产性能奠定了基础。本文论述了适应性进化的关键技术及在提高微生物细胞工厂环境耐受性和生产效率方面的重要应用,并展望了适应性进化实现微生物细胞工厂在工业环境下高效运行的重要前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号