首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
SFB作为一种肠道共生菌受到越来越多的关注。研究显示其可能在宿主的免疫系统成熟过程中扮演着重要角色,包括调控T细胞的分化与平衡,增加Th17细胞的比例,刺激机体内分泌型免疫球蛋白IgA的分泌等。随着研究的不断深入,人们发现肠道内SFB的定植有利于宿主抵抗外来致病菌,如大肠杆菌和梭菌等的感染。同时也有研究表明,SFB的定殖能促进T细胞向Th17的分化,有利于自身免疫性疾病,如脑脊髓炎和类风湿性关节炎等的发生。另一方面,SFB的分布与定植也受到宿主因子的影响,不同物种来源的SFB存在着宿主特异性,肠道不同解剖部位SFB的形态及定殖数量也存在着差异等。  相似文献   

2.
【背景】已有研究表明,微生物在宿主肠道中的定殖受宿主、肠道环境、微生物物种特性和菌株来源等多个因素的影响。一般认为,来源于同类宿主的微生物菌株,在该类宿主肠道中具有定殖优势,但缺乏在物种和菌株水平上研究微生物自身特性在宿主肠道中定殖的研究报道。【目的】将不同来源(同类宿主肠道、非同类宿主肠道和非肠道环境)、具有不同生物学特性的3株香坊肠球菌(Enterococcus xiangfangensis)和4株罗伊氏乳杆菌(Lactobacillusreuteri)对无菌猪肠道进行定殖,在物种和菌株2个水平上探究物种特性和菌株来源对宿主肠道定殖的偏好性,揭示影响微生物定殖效率的关键因素。【方法】在本项研究中,将从藏猪(Tibetan pigs)、小鼠(ob/ob mice)、食蟹猴(Macaca fascicularis)和发酵食品中分离得到的多株香坊肠球菌和罗伊氏乳杆菌,制成混合菌剂对无菌巴马香猪(Bama miniature pig)进行为期4周的饲喂,并通过实时荧光定量PCR方法检测这7株菌在无菌猪肠道中的定殖情况。【结果】在物种水平上,香坊肠球菌和罗伊氏乳杆菌在无菌猪体内具有相近的定殖...  相似文献   

3.
雷静  刘泽世  雷珂  薛丽  耿燕 《微生物学报》2021,61(8):2306-2315
耐碳青霉烯类肠杆菌科细菌(carbapenem-resistant Enterobacteriaceae,CRE)在肠腔中定殖通常先于或并存于CRE的感染。正常情况下,定殖的CRE、肠道菌群和宿主相互作用,处于稳定平衡的状态,当肠道菌群出现失调时,肠道正常菌群失去对定殖CRE的抵抗力,增加CRE感染的风险。大量研究表明通过肠道共生菌群对CRE的定殖抗性不仅可以预防感染,而且也可以降低医疗环境中患者间相互传播的风险。本文就CRE的流行现状、肠杆菌科细菌定殖机制以及肠道共生菌群对CRE定殖抗性机制作一综述,以期为CRE感染的防控工作提供新思路和新方法。  相似文献   

4.
【目的】目前,针对昆虫肠道细菌定殖规律的研究还未见报道。探索西方蜜蜂(Apis mellifera)肠道菌群定殖过程两个重要时间节点(起始0日龄和稳态7日龄)间肠道细菌群落(菌群)结构组成的差异,加深对蜜蜂及昆虫肠道菌群定殖规律的认识。【方法】分别采集两个化蛹后工蜂发育阶段的个体各5只,分别解剖并提取其肠道菌群DNA。使用Illumina技术对肠道菌群16S rD NA高变区进行高通量测序。通过生物信息学的分析方法对肠道菌群进行多样性分析,并对两个时间点相对丰度最高的肠道菌群进行统计分析,比较肠道菌群相对丰度和组成的差异。【结果】共获得515156条高质量序列,长度为227904953bp,平均长度为442bp。基于OTUs的分类表明,工蜂肠道细菌分别隶属于34个门82个纲221个目405个科799个属。此外,工蜂肠道菌群定殖起点和终点间的Alpha多样性指数存在显著差异(ACE,P=0.0014;Chao,P=0.0013;Shannon,P=0.0003;Simpson,P=0.0028,Student’s t检验)。此外,相较0日龄工蜂,7日龄工蜂肠道中的乳酸杆菌Lactobacillus、Gilliamella、双歧杆菌Bifidobacterium、Snodgrassella4个属的相对丰度显著增加;相反,不动杆菌Acinetobacter、大肠杆菌志贺氏菌Escherichia-Shigella、鞘脂单胞菌Sphingomonas、类杆菌Bacteroides、涅斯捷连科氏菌Nesterenkonia、栖热菌Thermus6个属的细菌相对丰度显著降低(P0.05)。【结论】出房(0日龄)成年工蜂的肠道菌群多样性显著高于菌群定殖完成(7日龄)工蜂的肠道菌群多样性,且成年工蜂肠道菌群定殖完成前后部分类群的相对丰度显著改变。本研究的结果不仅可增加我们对蜜蜂肠道菌群定殖规律的认识,也能够为研究其他昆虫肠道菌群的定殖规律提供重要的参考信息。  相似文献   

5.
蜜蜂肠道菌群定殖研究进展   总被引:1,自引:1,他引:0  
肠道菌群在其宿主健康中发挥着各种各样的重要功能。蜜蜂是高度社会化的昆虫,其肠道菌群与大多数昆虫明显不同,由兼性厌氧和微好氧的细菌组成,具有高度保守性和专门的核心肠道微生物群。近年来的研究表明,蜜蜂肠道微生物群在代谢、免疫功能、生长发育以及保护机体免受病原体侵袭等方面起着重要作用,并已证实肠道微生物在蜜蜂健康和疾病中起着重要作用,肠道微生物群的破坏对蜜蜂健康会产生不利影响。本文综述了蜜蜂肠道菌群的特征及菌群定殖研究进展,介绍了蜜蜂的日龄、群体、季节等对蜜蜂肠道菌群定殖的影响,探讨了宿主的功能和新陈代谢对肠道菌群的影响。  相似文献   

6.
生防菌AS818抗药性标记标在大豆根限定殖   总被引:7,自引:2,他引:5  
通过60Coγ-射线(1.0×104rad)对生防菌株链霉菌AS818孢子悬液(106/mL)进行诱变,得到抗链霉素(>50μg/mL)突变株5株.经诱导,RL-4抗链霉素水平达到10μg/mL.标记株RL-4在1%水琼脂(WA)和无菌土中培养的大豆根际定殖趋势有所不同.RL-4在1%WA培养的大豆根表的定殖量呈逐步上升趋势.无菌土中种植的大豆根际和根表的检测表明RL-4可在无菌土中大豆根际短期定殖,在根际第1周数量降低了100倍,以后数量开始逐渐上升,第3周达到高峰,数量比第1周增加了3个数量级,但在第4周其数量又开始下降;在根表RL-4数量逐步下降,到第4周已检测不到RL-4的存在.组织印记法检测发现标记株RL-4可以在无菌培养的大豆根表定殖并沿根分布,但却不能定殖于根内.  相似文献   

7.
益生菌产生的细菌素及其功能机制   总被引:2,自引:0,他引:2  
滕坤玲  钟瑾 《微生物学报》2022,62(3):858-868
细菌素是细菌核糖体合成的具有抑菌活性的小肽.细菌素的产生是益生菌重要的益生特性,它们天然无毒,不仅对食品腐败菌和人体致病菌有很好的抑菌活性,还具有有助益生菌定殖和调节肠道菌群等益生特性.本文综述了益生菌产生的细菌素的种类、条件性合成、益生功能及其作用机理等,以期为深入认识益生菌的益生功能及其作用方式,研究开发对人体有益...  相似文献   

8.
外源基因标记的紫云英根瘤菌在水稻根部的定殖研究   总被引:6,自引:0,他引:6  
前期研究中已证实紫云英根瘤菌(Rhizobium astragalus)JS5A16菌株对水稻生长有一定的促生作用,利用gusA基因标记的JS5A16菌株(编号为JS5A16G)接种水稻种子并检测其在水稻(汕优63)生长初期的根固定殖动态及分布。结果表明菌株JS5A16G在水稻出苗后2d根固定殖密度大量增加,第4天达到最大值16d后趋于稳定。将水稻根表面灭菌后,检测菌株JS5A16G在根内的定殖情况,发现在“汕优63”出苗后2d检测不出菌株JS5A16G,第4天可检测出。根部直接染色显示,菌株JS5A16G在根部的分布并不均匀,主要是在根系的某些部位形成微菌落。同时利用luxAB发光酶基因标记紫云英根瘤菌JS5A16菌株(编号为JS5A16L)研究其在不同品种水稻根部的定殖动态。结果表明,菌株JS5A6L在不同水稻品种“汕优63”、“汕优64”和“马协l18—2”根部的定殖密度不同且可以进入不同水稻品种的根内。在整个水稻生长期内菌株JS5A16L在“汕优64”根部的定殖密度明显高于其在“汕优63”根部的定殖密度,在“马协ll8—2”的定殖密度与其在“汕优63”、“汕优64”根部相比没有显著差异。但菌株JS5A16L在不同水稻根部的定殖动态相似,数量均在水稻生长到60-75d时(即水稻的孕穗期)达到最高值。  相似文献   

9.
昆虫肠道为某些微生物提供了一个特定的定殖环境,这些肠道菌群也为其宿主提供了很多潜在的有益作用。因而昆虫在一定范围和程度上表现出对肠道菌群的依赖并形成一种互惠互利的共生关系。近年来,随着高通量测序技术的广泛应用,促进了肠道菌群及其功能基因的研究。也为进一步了解如何区分非致病性菌(共生菌)和致病菌(病原菌)的致病机理、调控昆虫肠道菌并用来防治害虫或保护授粉昆虫在内的有益昆虫奠定了基础。本文概述了昆虫肠道菌群定殖环境、起源和进化以及传播方式,综述了近年来昆虫肠道菌群功能研究的最新进展,并对今后昆虫肠道菌群的研究方向进行了展望。  相似文献   

10.
益生菌Escherichia coli Nissle1917功能研究进展   总被引:1,自引:0,他引:1  
潘秋莎  苏式兵  赵明 《微生物学通报》2019,46(11):3133-3139
大肠埃希菌Nissle1917,简称EcN,是益生菌中为数不多的革兰氏阴性菌,在临床上主要用于克罗恩病、溃疡性结肠炎等胃肠功能障碍。其机制在于EcN能在人体肠道定殖,并阻止病原菌对肠道黏膜的侵袭,对肠道黏膜屏障具有保护和修护作用。EcN还参与机体的免疫调控,平衡免疫因子的分泌,增强宿主免疫能力,进而缓解和治疗炎症。最进研究发现,EcN具有肿瘤靶向作用,是良好的药物载体,且与化疗药物联用可增强药物抗肿瘤的疗效,为抗肿瘤治疗提供了新的思路。  相似文献   

11.
In ex-germ-free mice conventionalized by association with fecal microorganisms, the induction of major histocompatibility complex class II molecules and fucosylation of asialo GM1 glycolipid occur in the small intestinal epithelial cells (IEC). The intestinal intraepithelial lymphocytes (IEL), especially αβ T-cell receptor-bearing ones, also remarkably expand and show cytolytic activity. In this study, we investigated the immunological and physiological characteristics of the small intestine induced by a kind of indigenous bacteria of the small intestine, segmented filamentous bacteria (SFB), among chloroform-resistant intestinal bacteria. Monoassociation of SFB with germ-free mice was confirmed by the determination of the base sequences of polymerase chain reaction products of 16S rRNA genes of the fecal bacteria of these mice and in situ hybridization using fluorescein-labeled probes based on them. SFB increased the number of αβTCR-bearing IEL and induced Thy-1 expression and cytolytic activity of IEL. The induction of MHC class II molecules and fucosyl asialo GM1 glycolipids and the increases in the mitotic activity and the ratio of the number of columnar cells to those of goblet cells also occurred in the small intestinal epithelial cells on monoassociation of these bacteria. SFB are important indigenous bacteria for the development of the mucosal architecture and immune system in the small intestine, at least in mice.  相似文献   

12.
Gut microbial induction of host immune maturation exemplifies host-microbe mutualism. We colonized germ-free (GF) mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota. Gut bacterial numbers and phylum abundance were similar in MMb and HMb mice, but bacterial species differed, especially the Firmicutes. HMb mouse intestines had low levels of CD4(+) and CD8(+) T cells, few proliferating T cells, few dendritic cells, and low antimicrobial peptide expression--all characteristics of GF mice. Rat microbiota also failed to fully expand intestinal T cell numbers in mice. Colonizing GF or HMb mice with mouse-segmented filamentous bacteria (SFB) partially restored T cell numbers, suggesting that SFB and other MMb organisms are required for full immune maturation in mice. Importantly, MMb conferred better protection against Salmonella infection than HMb. A host-specific microbiota appears to be critical for a healthy immune system.  相似文献   

13.
Although the intestinal tract plays a major role in early human immunodeficiency virus (HIV) infection, the role of immune activation and viral replication in intestinal tissues is not completely understood. Further, increasing evidence suggests the early leukocyte activation antigen CD69 may be involved in the development or regulation of important T cell subsets, as well as a major regulatory molecule of immune responses. Using the simian immunodeficiency virus (SIV) rhesus macaque model, we compared expression of CD69 on T cells from the intestine, spleen, lymph nodes, and blood of normal and SIV-infected macaques throughout infection. In uninfected macaques, the majority of intestinal lamina propria CD4+ T cells had a memory (CD95+) phenotype and co-expressed CD69, and essentially all intestinal CCR5+ cells co-expressed CD69. In contrast, systemic lymphoid tissues had far fewer CD69+ T cells, and many had a naïve phenotype. Further, marked, selective depletion of intestinal CD4+CD69+ T cells occurred in early SIV infection, and this depletion persisted throughout infection. Markedly increased levels of CD8+CD69+ T cells were detected after SIV infection in virtually all tissues, including the intestine. Further, confocal microscopy demonstrated selective, productive infection of CD3+CD69+ T cells in the intestine in early infection. Combined, these results indicate CD69+CD4+ T cells are a major early target for viral infection, and their rapid loss by direct infection may have profound effects on intestinal immune regulation in HIV infected patients.  相似文献   

14.
Zhang J  Deng J  Wang Z  Che C  Li YF  Yang Q 《Current microbiology》2011,62(5):1623-1631
Recent studies have demonstrated that lactobacilli or their cell components can improve certain immune function in animals. The aim of this study is to investigate the effects of porcine lactobacilli on the intestinal mucosal immunity of piglets. Neonatal piglets were used as a model and were orally administrated with Lactobacillus salivarius B1 isolated from the duodenal mucosa of a healthy piglet. The feces of the piglets were collected on days 7, 14, and 21 for intestinal microflora analysis. On day 28, the piglets were sacrificed, and their intestinal mucosa samples were immediately collected to investigate the changes in intestinal morphological and immunocompetent cells. Finally, the expression of cytokines and TLRs was detected in the different intestinal segments. The results indicate that L. salivarius B1 can partially ameliorate the microflora of the feces and increase the number of intestinal immunocompetent cells, as the intraepithelial lymphocyte (P < 0.05), and the IgA-producing cells (P < 0.01) in the lactobacilli-treated group were all increased compared with those in the control group. Enhanced expression of the cytokine IL-6 gene was also observed in the ileum (P < 0.05). Moreover, L. salivarius B1 can also upregulate the expression of TLR2 in the intestinal tract at the gene and protein levels (P < 0.05). The results demonstrate that L. salivarius B1 is beneficial for the maturation of the intestinal mucosal immune system and elicited local immunomodulatory activities. In addition, the modulatory effects of L. salivarius B1 on mucosal immunity mainly depend on its extracellular components.  相似文献   

15.
Segmented filamentous bacteria (SFB) are indigenous gut commensal bacteria. They are commonly detected in the gastrointestinal tracts of both vertebrates and invertebrates. Despite the significant role they have in the modulation of the development of host immune systems, little information exists regarding the presence of SFB in humans. The aim of this study was to investigate the distribution and diversity of SFB in humans and to determine their phylogenetic relationships with their hosts. Gut contents from 251 humans, 92 mice and 72 chickens were collected for bacterial genomic DNA extraction and subjected to SFB 16S rRNA-specific PCR detection. The results showed SFB colonization to be age-dependent in humans, with the majority of individuals colonized within the first 2 years of life, but this colonization disappeared by the age of 3 years. Results of 16S rRNA sequencing showed that multiple operational taxonomic units of SFB could exist in the same individuals. Cross-species comparison among human, mouse and chicken samples demonstrated that each host possessed an exclusive predominant SFB sequence. In summary, our results showed that SFB display host specificity, and SFB colonization, which occurs early in human life, declines in an age-dependent manner.  相似文献   

16.
The intestinal epithelia consists of four lineages of differentiated cells, all of which arise from stem cells residing in the intestinal crypt. For proper regeneration from epithelial damage, both expansion of the epithelial cell number and appropriate regulation of lineage differentiation from the remaining stem cells are thought to be required. In a series of studies, we have shown that bone-marrow derived cells could promote the regeneration of damaged epithelia in the human intestinal tract. Donor-derived epithelial cells substantially repopulated the gastrointestinal tract of bone-marrow transplant recipients during epithelial regeneration after graft-versus-host disease. Furthermore, precise analysis of epithelial cell lineages revealed that during epithelial regeneration, secretory lineage epithelial cells that originated from bone-marrow significantly increased in number. These findings may lead to a novel therapy to repair damaged intestinal epithelia using bone marrow cells, and provide an alternative therapy for refractory inflammatory bowel diseases.  相似文献   

17.
The importance of epithelial–mesenchymal interaction on the development of gastro‐intestinal (GI) organs has been repeatedly reported, but its molecular mechanism has not been fully understood though several factors including hepatocyte growth factor and endothelin‐3 have been shown to mediate it. Activins have been demonstrated to play important roles in the regulation of organogenesis in vertebrates, but their roles in the regulation of growth and differentiation of GI organs remain to be solved. In the present study, we examined expression of activins in developing rat GI tract, and found that inhibin bA encoding activin A was specifically expressed by GI mesenchymes, while inhibin bB encoding activin B was expressed by both epithelial and mesenchymal components. We then examined the effect of activin A on the growth of fetal rat GI epithelial cells in primary culture. We found that activin A inhibited the growth of forestomach and glandular stomach epithelial cells while it stimulated the growth of colonic epithelial cells. These results suggest that activin A secreted from GI mesenchymes region‐specifically regulates the growth of attaching epithelial cells. We thus conclude that activin A mediates epithelial‐mesenchymal interaction in the developing GI tract.  相似文献   

18.
Biological clock components have been detected in many epithelial tissues of the digestive tract of mammals (oral mucosa, pancreas, and liver), suggesting the existence of peripheral circadian clocks that may be entrainable by food. Our aim was to investigate the expression of main peripheral clock genes in colonocytes of healthy humans and in human colon carcinoma cell lines. The presence of clock components was investigated in single intact colonic crypts isolated by chelation from the biopsies of 25 patients (free of any sign of colonic lesions) undergoing routine colonoscopy and in cell lines of human colon carcinoma (Caco2 and HT29 clone 19A). Per‐1, per‐2, and clock mRNA were detected by real‐time RT‐PCR. The three‐dimensional distributions of PER‐1, PER‐2, CLOCK, and BMAL1 proteins were recorded along colonic crypts by immunofluorescent confocal imaging. We demonstrate the presence of per‐1, per‐2, and clock mRNA in samples prepared from colonic crypts of 5 patients and in all cell lines. We also demonstrate the presence of two circadian clock proteins, PER‐1 and CLOCK, in human colonocytes on crypts isolated from 20 patients (15 patients for PER‐1 and 6 for CLOCK) and in colon carcinoma cells. Establishing the presence of clock proteins in human colonic crypts is the first step toward the study of the regulation of the intestinal circadian clock by nutrients and feeding rhythms.  相似文献   

19.
Segmented filamentous bacteria (SFB) are present in the gastrointestinal tract of mice from weaning until the maturation of the immune system. Probiotic bacteria also have an effect on host immunity. To study the relationships established between these bacteria, samples from a mouse model fed with Lactobacillus plantarum under different immunological conditions were analysed. SFB populations were measured by a newly designed group-specific quantitative PCR assay. The results confirmed the presence of the probiotic in the intestine and an expansion of SFB in the ileum of immunocompromised mice, which was abolished upon administration of L. plantarum, an effect not described to date.  相似文献   

20.
Probiotics and bovine colostrums had been proven to be beneficial for human health. Lactobacillus rhamnosus ZDY114 and anti-Helicobacter pylori bovine colostrums were used for the preparation of microecological additives, and their synergistic antidigestion effect in the simulated gastrointestinal tract (in vitro) was investigated. Either L. rhamnosus or purified IgG from immune colostrums was very sensitive in simulated gastric environment and slightly sensitive in simulated intestinal tract. No viable counts were recovered from the solution of dissolved freeze-dried powder (7.14 log10 CFU/ml) of L. rhamnosus when digested at pH 3.0 with pepsin for 30 min. Activity of purified IgGs from immune colostrums could not be detected when digested at pH 3.0 with pepsin for 30 min; 29% titer could be detected when digested at pH 8.0 with trypsin for 5 h. The IgGs in nonpurified immune colostrums presented stronger resistance against gastrointestinal digestion than purified IgGs. Moreover, the combination of L. rhamnosus ZDY114 and immune colostrums strengthened their antidigestion ability. Even under pH 3.0, 4.0 with pepsin, the titer of anti-HP IgG maintained above 123 and 83.3%, respectively. Similarly, that titer was above 93.3% when digested at pH 8.0 with trypsin for 4.5 h. In conclusion, L. rhamnosus and anti-Helicobacter pylori bovine colostrums had synergistic antidigestion effect in simulated gastrointestinal tract (in vitro).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号