首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
曾秀丽  王志  罗利  王旭  陈宣钦  周育 《微生物学报》2020,60(10):2198-2210
【目的】以紫娟茶树分离的内生菌水生草螺菌ZXN111为研究对象,通过分子遗传学方法证实该菌株植物生长素吲哚3-乙酸(IAA)合成的主要分子途径。【方法】参考草螺菌基因组信息中IAA合成基因簇,选取与IAA合成密切相关的候选基因,即芳香族氨基酸转氨酶基因(tyrb),通过基因插入突变与基因互补方法,结合茶树组培苗体内促生能力分析,初步验证水生草螺菌生长素合成的主要机制。【结果】植物生长素IAA合成候选基因tyrb突变后,突变株tyrb::pK19mobΩ2HMB 48 h的IAA合成量显著低于野生型菌株ZXN111,且tyrb基因互补后,互补株tyrb::pK19mobΩ2HMB(+)的IAA合成能力得到了显著恢复。茶树促生实验发现,突变株tyrb::pK19mobΩ2HMB接种组的茶树组培苗根长、根重及植株鲜重指标上均显著低于野生菌处理组。【结论】水生草螺菌ZXN111有多条IAA合成途径,其中的吲哚-3-丙酮酸(IPA)是最主要途径,其生长素合成对寄主茶树具有显著的促生功能。  相似文献   

2.
【目的】吲哚-3-乙酸是调控植物生长发育和生理活动的重要激素,吲哚-3-乙酸N-乙酰转移酶YsnE在吲哚-3-乙酸合成中发挥重要作用,本研究拟解析解淀粉芽胞杆菌中YsnE参与吲哚-3-乙酸合成的代谢途径。【方法】通过基因ysnE缺失和强化表达,分析ysnE对吲哚-3-乙酸合成影响,结合吲哚-3-乙酸合成中间物(吲哚丙酮酸、吲哚乙酰胺、色胺和吲哚乙腈)添加和体外酶转化实验,解析ysnE参与吲哚-3-乙酸合成的代谢途径。【结果】明确了YsnE在解淀粉芽胞杆菌HZ-12吲哚-3-乙酸合成中发挥重要作用。发现ysnE缺失菌株中的吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈利用显著降低,揭示了YsnE主要发挥吲哚丙酮酸脱羧酶YclB和吲哚乙酰胺水解酶/腈水解酶/腈水合酶YhcX的功能,并通过参与吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径来影响吲哚-3-乙酸合成。【结论】初步揭示了YsnE通过影响吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径参与吲哚-3-乙酸合成的代谢机理,为吲哚-3-乙酸合成途径解析和代谢工程育种构建吲哚-3-乙酸高产菌株奠定了基础。  相似文献   

3.
【背景】植物促生菌因其对植物生长促进及增强抗逆性等优点在植物-微生物联合修复重金属污染土壤中具有良好应用潜力。在污染土壤中,土著植物促生菌能够更好地定殖并保证促植物生长能力的发挥。【目的】从常年受上游多种重金属污染的鄱阳湖-乐安河段湿地分离出一批具有多种重金属抗性的优势土著植物促生菌,以期为植物-微生物联合修复重金属污染湿地提供一批优质的菌种资源。【方法】从乐安河流域戴村受重金属污染的湿地土壤及水体中分离具有Cu、Zn、Pb抗性菌株,测定菌株的促植物生长特性[产IAA(Indole acetic acid)、溶磷、产铁载体及ACC(1-Aminocyclopropane-1-carboxylic acid)脱氨酶活性],挑选促生特性较好的菌株进行16S r RNA基因序列分析鉴定,并测定菌株对其他胁迫条件(抗生素、酸碱、盐)的耐受能力。【结果】分离得到22株能够同时耐受Cu 50 mg/L、Zn 400 mg/L、Pb 800 mg/L的菌株,其中10株表现出较好的促植物生长特性,对其进行16S r RNA基因序列分析鉴定,有4株属于Ralstonia sp.,3株属于Burkholderia sp.,另3株则分别属于Cupriavidus sp.、Stenotrophomonas sp.和Novosphingobium sp.。基于这10株菌抗性特征的聚类分析及主成分分析,结果与系统发育树分析结果高度一致。【结论】耐受多种重金属的土著植物促生菌的分离鉴定为重金属污染土壤的植物-微生物联合原位修复提供良好的微生物资源。  相似文献   

4.
【背景】新疆是全国最大的盐渍化土壤分布区,土壤盐渍化严重影响作物生长,耐盐促生菌可以有效改善土壤肥力,提高作物抗逆性,促进植物生长,提高土壤利用率。【目的】分离筛选获得木碱蓬(Suaeda dendroides)根际土壤中耐盐促生菌菌株,对优良促生作用的菌株进行分子鉴定,挖掘微生物资源,为微生物菌剂的研制奠定基础。【方法】采用传统的分离方法筛选获得木碱蓬根际耐盐微生物,采用"三级筛选体系"筛选获得耐盐促生菌菌株,用CTAB法提取菌株DNA,对菌株16S rRNA基因测序进行系统发育分析,确定耐盐促生菌菌株的分类地位。【结果】从木碱蓬根际共分离获得耐盐微生物58株,8株具有固氮活性,解磷活性菌株12株,具有解钾活性菌株15株,产IAA活性的菌株3株,具有较强产氨活性的菌株2株。经过促生平板筛选,菌株GTZW50-5和MH-F促进了拟南芥生长,表现出较好的促生效果,通过小麦盆栽试验,菌株GTZW50-5对小麦的根长以及株高具有显著的促生作用,在一定程度上提高了植物体内的叶绿素含量。MH-F菌株对小麦的根系具有较显著的促生作用,且对小麦的叶绿素及脯氨酸含量在不同盐浓度下都有所提高。经过系统发育分析,GTZW50-5与Bacillus vallismortis (AY603658)序列相似度达到99.43%,鉴定属于Bacillus vallismortis,MH-F与Enterobacterludwigii(JTLO01000001)序列相似度为98.34%,鉴定属于Enterobacter属。【结论】菌株GTZW50-5与MH-F均具有较好的促生效果,这为耐盐微生物资源的开发和利用提供了理论依据。  相似文献   

5.
【目的】从生菜根际土中筛选出2株具有多种生物学特性、促生和生防效果的芽孢杆菌。【方法】土样经过80°C高温处理,得到2株细菌。通过形态学、生理生化、16S rRNA和gyr B基因鉴定菌株。对其溶磷、合成IAA和嗜铁素能力及对植物病原真菌的拮抗作用进行测定。用2株细菌处理生菜种子,评价其促生效果。用菌株WXD 3-2处理小麦,评价其生防效果。【结果】经过鉴定,确定菌株WXD 3-1为巨大芽孢杆菌(Bacillus megaterium),WXD 3-2为枯草芽孢杆菌(Bacillus subtilis)。2株菌均有溶磷、合成嗜铁素、IAA能力和促生能力,菌株WXD 3-2能够对多种病原菌产生拮抗作用,抑制其生长。经过WXD 3-1和WXD 3-2处理,生菜植株高、叶片宽、植株鲜重及植株干重与对照相比分别增加21.51%和8.88%、31.93%和14.51%、41.30%和13.58%、42.76%和26.35%。菌株WXD 3-2能够减轻小麦根腐病病症,小麦根部病斑减少。【结论】分离出的2株芽孢杆菌均具有溶磷、合成IAA和嗜铁素能力,能够促进生菜的生长,且菌株WXD 3-2还具有生防效果。  相似文献   

6.
【目的】研究稀有放线菌——雷公藤内生小单孢菌(Micromonospora sp.M66)的次级代谢产物,为微生物药物或农用生物制剂开发提供结构多样的化合物资源。【方法】利用薄层层析、正(反)相硅胶柱层析、凝胶层析、液相色谱等技术对M66菌株中次级代谢产物进行分离纯化,利用波谱技术对化合物进行结构鉴定。【结果】最终分离纯化了7个单体化合物,结合质谱与核磁技术对这7个化合物进行了结构解析和鉴定,它们属于一组吲哚生物碱。化合物2是重要的植物生长调节剂,化合物3对淋巴细胞性白血病细胞P388、枯草芽孢杆菌和酿酒酵母的增殖有抑制作用,化合物6对金黄色葡萄球菌有很好的抑制作用。【结论】化合物3-7首次从小单胞菌中鉴定出来,表明该小单孢菌具有较强的利用吲哚或色氨酸合成次级代谢产物的能力和挖掘生物碱类药物的潜力。  相似文献   

7.
【背景】薄层菌(Hymenobacter)是不利生长环境(如营养贫瘠的荒漠土壤)中的优势细菌类群,目前对该类菌的研究集中于分离鉴定,尚无对植物促生相关的研究报道。【目的】从浑善达克荒漠土壤分离鉴定细菌,并分析菌株对马铃薯快繁苗生长的影响。【方法】基于选择性培养基,以涂布划线方法进行细菌的分离培养;扩增16SrRNA基因并测序,分析序列相似性和系统发育,并参考形态和生理生化特征对菌株进行初步分类鉴定;以选择性培养基或比色法等方法对纯培养物进行促生性状分析;采用MS固体培养基分析菌株对马铃薯快繁苗生长的影响。【结果】分离得到一株编号为L28的细菌,其16S rRNA基因序列与Hymenobacter koreensis GYR3077T的相似性最高,为96.46%;菌株L28具有固氮、解磷酸钙-磷、解植酸磷-磷、产吲哚-3-乙酸(indole-3-acetic acid,IAA)(7.51 mg/L)、产铁载体(D/d为2.47)和有1-氨基环丙烷羧酸(1-amino-cyclopropane-1-carboxylicacid,ACC)脱氨酶活性等多种植物促生特性;接种L28相比不接种显著...  相似文献   

8.
【背景】挖掘兼具烟碱降解和植物根际促生细菌(Plant Growth-Promoting Rhizobacteria,PGPR)功能的细菌资源,有助于保护土壤质量,实现绿色种植。【目的】分析烤烟根际细菌多样性,筛选可降解高浓度烟碱的PGPR。【方法】采用纯培养法在选择性培养基上分离烟碱降解细菌。通过BOXA1R-PCR分析技术、16SrRNA基因测序及系统发育树构建,对菌株的遗传多样性和分类学地位进行分析。进一步评价了菌株的吲哚乙酸(Indole-3-Acetic Acid,IAA)活性、溶磷能力、病原菌拮抗能力等PGPR指标,以筛选出高效PGPR,最后通过盆栽试验验证其促生效果。【结果】分离得到58株烟碱降解细菌,根据BOXA1R-PCR指纹图谱选取11株菌进行16S rRNA基因序列测定,结果表明,58株菌分别属于芽孢杆菌属(Bacillus)、假单胞菌属(Pseudomonas)、拉乌尔菌属(Raoultella)和短波单胞菌属(Brevundimonas)4个属,以芽孢杆菌属(Bacillus)为优势菌属。58株细菌中48.28%的菌株可产IAA,27.59%具备溶磷能力,37.93%具备纤维素降解能力,G2-13、G2-3及HT2-8因促生与抗病特性突出而被筛选为目标功能菌。盆栽试验结果表明,G2-13菌株对幼苗生长的促进作用明显,可使株高与地上部鲜重分别增加33.05%与53.32%。【结论】烤烟根际存在较为丰富多样的烟碱降解细菌,它们在种植业上具有潜在的应用价值。  相似文献   

9.
【目的】筛选植物根际促生贝莱斯芽孢杆菌,分析菌株的生防潜力和全基因组特征。【方法】通过温室小青菜促生试验以及植物益生表型的分析,明确具有促生功能的菌株SF327。用滤纸片法测定菌株SF327对5种植物病原真菌以及4种植物病原细菌的拮抗活性。通过大田喷雾接种的方式评价菌株SF327对水稻白叶枯病的防治潜力。利用antiSMASH分析预测菌株SF327产生的二次代谢产物。通过比较基因组分析SF327与2株植物根际益生贝莱斯芽孢杆菌的代表性菌株FZB42和SQR9的亲缘关系、核心基因以及二次代谢产物合成基因簇。【结果】菌株SF327能够产生生长素吲哚-3-乙酸,是一株有益的根围促生菌;对稻瘟病菌、黄瓜枯萎病菌、辣椒疫霉菌、橡胶树胶孢炭疽菌、尖孢炭疽病菌都具有明显的拮抗作用;也具有防治水稻白叶枯病的生防潜力。菌株SF327基因组全长4.08 Mb,GC含量为46.49%,共编码4 033个基因,含有13个潜在的次生代谢产物编码基因簇,不含有质粒。SF327与FZB42和SQR9具有较近的亲缘关系,有87%以上的核心基因相同,但与SQR9的亲缘关系较近。【结论】B. velezensis SF327是一株具有宽广拮抗谱的多功能菌株,具有较好的生防应用潜力。  相似文献   

10.
烟草根际可培养微生物多样性及防病促生菌的筛选   总被引:1,自引:0,他引:1  
【背景】根际微生物在植物根部生态系统中扮演着重要角色,影响着植物的营养吸收和健康生长。【目的】了解常年不发病烟田烤烟品种K326根际可培养微生物的多样性,筛选具有防病促生功能的菌株,为烟草病害绿色防控提供资源。【方法】采用传统培养方法对烟草根际土壤中的细菌和真菌进行分离鉴定,评价菌株的促生特性及病原菌拮抗能力,并进一步验证典型菌株对盆栽烟苗的促生效果。【结果】共获得261株微生物菌株,包括160株细菌和101株真菌。经分子鉴定,细菌中以变形菌门(Proteobacteria)和厚壁菌门(Firmicutes)为主要类群;真菌中以子囊菌门(Ascomycota)和毛霉菌门(Mucoromycota)为主要类群。在属水平上,细菌以假单胞菌属(Pseudomonas)和芽孢杆菌属(Bacillus)为主,真菌以曲霉属(Aspergillus)和青霉属(Penicillium)为主。从不同种水平上进一步选择44株细菌为代表菌株,发现它们均具有不同程度的吲哚-3-乙酸(Indole-3-Acetic Acid,IAA)产生能力,9株能够溶解有机磷,16株能够溶解无机磷,13株产生铁载体,14株产...  相似文献   

11.
The plant hormone auxin, which is predominantly represented by indole-3-acetic acid (IAA), is involved in the regulation of plant growth and development. Although IAA was the first plant hormone identified, the biosynthetic pathway at the genetic level has remained unclear. Two major pathways for IAA biosynthesis have been proposed: the tryptophan (Trp)-independent and Trp-dependent pathways. In Trp-dependent IAA biosynthesis, four pathways have been postulated in plants: (i) the indole-3-acetamide (IAM) pathway; (ii) the indole-3-pyruvic acid (IPA) pathway; (iii) the tryptamine (TAM) pathway; and (iv) the indole-3-acetaldoxime (IAOX) pathway. Although different plant species may have unique strategies and modifications to optimize their metabolic pathways, plants would be expected to share evolutionarily conserved core mechanisms for auxin biosynthesis because IAA is a fundamental substance in the plant life cycle. In this review, the genes now known to be involved in auxin biosynthesis are summarized and the major IAA biosynthetic pathway distributed widely in the plant kingdom is discussed on the basis of biochemical and molecular biological findings and bioinformatics studies. Based on evolutionarily conserved core mechanisms, it is thought that the pathway via IAM or IPA is the major route(s) to IAA in plants.  相似文献   

12.
Indole-3-acetic acid (IAA) is a fundamental phytohormone with the ability to control many aspects of plant growth and development. Pseudomonas sp. strain UW4 is a rhizospheric plant growth-promoting bacterium that produces and secretes IAA. While several putative IAA biosynthetic genes have been reported in this bacterium, the pathways leading to the production of IAA in strain UW4 are unclear. Here, the presence of the indole-3-acetamide (IAM) and indole-3-acetaldoxime/indole-3-acetonitrile (IAOx/IAN) pathways of IAA biosynthesis is described, and the specific role of two of the enzymes (nitrilase and nitrile hydratase) that mediate these pathways is assessed. The genes encoding these two enzymes were expressed in Escherichia coli, and the enzymes were isolated and characterized. Substrate-feeding assays indicate that the nitrilase produces both IAM and IAA from the IAN substrate, while the nitrile hydratase only produces IAM. The two nitrile-hydrolyzing enzymes have very different temperature and pH optimums. Nitrilase prefers a temperature of 50°C and a pH of 6, while nitrile hydratase prefers 4°C and a pH of 7.5. Based on multiple sequence alignments and motif analyses, physicochemical properties and enzyme assays, it is concluded that the UW4 nitrilase has an aromatic substrate specificity. The nitrile hydratase is identified as an iron-type metalloenzyme that does not require the help of a P47K activator protein to be active. These data are interpreted in terms of a preliminary model for the biosynthesis of IAA in this bacterium.  相似文献   

13.
The biosynthetic route of the key plant hormone, indole-3-acetic acid (IAA) has confounded generations of biologists. Evidence in higher plants has implicated two auxin intermediates with roles established in bacteria: indole-3-acetamide (IAM) and indole-3-pyruvic acid. Herein, the IAM pathway is investigated in pea (Pisum sativum), a model legume. The compound was not detected in pea tissue, although evidence was obtained for its presence in Arabidopsis, tobacco, and maize. Deuterium-labeled tryptophan was not converted to IAM in pea roots, despite being converted to IAA. After feeds of deuterium-labeled IAM, label was recovered in the IAA conjugate IAA-aspartate (IAAsp), although there was little or no labeling of IAA itself. Plants treated with IAM did not exhibit high-IAA phenotypes, and did not accumulate IAA. This evidence, taken together, indicates that although exogenous IAM may be converted to IAA (and further to IAAsp), the IAM pathway does not operate naturally in pea roots.  相似文献   

14.
植物根际促生枯草芽孢杆菌JC01筛选   总被引:4,自引:0,他引:4  
【目的】筛选高效植物根际促生细菌,阐明产挥发性有机化合物(VOC)菌株JC01的促生机制。【方法】选取从植物根际中分离得到的838株细菌,以固氮、解(溶)磷以及分泌嗜铁素、吲哚乙酸(IAA)活性为指标,对其促生能力进行赋值评估,将赋值在3分以上的107株细菌进行指纹图谱分析,挑选其中不同簇的20株促生潜力细菌进行温室实验,以评价赋值体系与温室促生效果之间的关系,进一步探究具有较好促生效果菌株JC01的作用机理。【结果】共筛选出了来源于指纹图谱中不同簇的4株具有较好促生效果的菌株,细菌的平板活性赋值与促生效果之间的相关系数r大于0.6。其中,菌株JC01分泌的具有促生作用的VOC能够增强番茄植株IAA信号通路关键基因的表达,减弱脱落酸(ABA)、乙烯(ETH)信号通路关键基因的表达。JC01经16S r RNA基因鉴定为枯草芽孢杆菌。【结论】细菌的平板活性赋值与促生效果之间存在较高的正相关性,枯草芽孢杆菌JC01可能通过产生VOC对番茄生长进行调控。  相似文献   

15.
The plant pathogenic fungus Colletotrichum gloeosporioides f. sp. aeschynomene utilizes external tryptophan to produce indole-3-acetic acid (IAA) through the intermediate indole-3-acetamide (IAM). We studied the effects of tryptophan, IAA, and IAM on IAA biosynthesis in fungal axenic cultures and on in planta IAA production by the fungus. IAA biosynthesis was strictly dependent on external tryptophan and was enhanced by tryptophan and IAM. The fungus produced IAM and IAA in planta during the biotrophic and necrotrophic phases of infection. The amounts of IAA produced per fungal biomass were highest during the biotrophic phase. IAA production by this plant pathogen might be important during early stages of plant colonization.  相似文献   

16.
The plant pathogenic fungus Colletotrichum gloeosporioides f. sp. aeschynomene utilizes external tryptophan to produce indole-3-acetic acid (IAA) through the intermediate indole-3-acetamide (IAM). We studied the effects of tryptophan, IAA, and IAM on IAA biosynthesis in fungal axenic cultures and on in planta IAA production by the fungus. IAA biosynthesis was strictly dependent on external tryptophan and was enhanced by tryptophan and IAM. The fungus produced IAM and IAA in planta during the biotrophic and necrotrophic phases of infection. The amounts of IAA produced per fungal biomass were highest during the biotrophic phase. IAA production by this plant pathogen might be important during early stages of plant colonization.  相似文献   

17.
Metabolism of indole-3-acetic acid (IAA) in apical shoots of Populus tremula (L.) x Populus tremuloides (Michx.) was investigated by feeding a mixture of [12C]IAA, [13C6]IAA, and [1[prime]-14C]IAA through the base of the excised stem. HPLC of methanolic plant extracts revealed eight major radiolabeled metabolites after a 24-h incubation period. Comparison between feeds with [5-3H]IAA and [1[prime]-14C]IAA showed that all detectable metabolites were nondecarboxylative products. The purified radiolabeled HPLC fractions were screened by frit-fast atom bombardment liquid chromatography-mass spectrometry for compounds with characteristic fragment pairs originating from the application with 12C and 13C isotopes. Samples of interest were further characterized by gas chromatography-mass spectrometry. Using this procedure, oxindole-3-acetic acid (OxIAA), indole-3-acetyl-N-aspartic acid (IAAsp), oxindole-3-acetyl-N-aspartic acid (OxIAAsp), and ring-hydroxylated oxindole-3-acetic acid were all identified as IAA metabolites. Furthermore, a novel metabolic pathway from IAA via IAAsp and OxIAAsp to OxIAA was established on the basis of refeeding experiments with the different IAA metabolites.  相似文献   

18.
The regulation of cellular auxin levels is a critical factor in determining plant growth and architecture, as indole-3-acetic acid (IAA) gradients along the plant axis and local IAA maxima are known to initiate numerous plant growth responses. The regulation of auxin homeostasis is mediated in part by transport, conjugation and deconjugation, as well as by de novo biosynthesis. However, the pathways of IAA biosynthesis are yet not entirely characterized at the molecular and biochemical level. It is suggested that several biosynthetic routes for the formation of IAA have evolved. One such pathway proceeds via the intermediate indole-3-acetamide (IAM), which is converted into IAA by the activity of specific IAM hydrolases, such as Arabidopsis AMIDASE1 (AMI1). In this article we present evidence to support the argument that AMI1-dependent IAA synthesis is likely not to be used during the first two days of seedling development.Key words: Arabidopsis thaliana, auxin biosynthesis, AMIDASE1, indole-3-acetic acid, indole-3-acetamide, LEAFY COTYLEDON1, seed developmentAuxins are versatile plant hormones that play diverse roles in regulating many aspects of plant growth and development.1 To enable auxins to develop their activity, a tight spatiotemporal control of cellular indole-3-acetic acid (IAA) contents is absolutely necessary since it is well-documented that auxin action is dose dependent, and that high IAA levels can have inhibitory effects on plant growth.2 To achieve this goal, plants have evolved a set of different mechanisms to control cellular hormone levels. On the one hand, plants possess several pathways that contribute to the de novo synthesis of IAA. This multiplicity of biosynthetic routes presumably facilitates fine-tuning of the IAA production. On the other hand, plants are equipped with a variety of enzymes that are used to conjugate free auxin to either sugars, amino acids or peptides and small proteins, respectively, or on the contrary, that act as IAA-conjugate hydrolases, releasing free IAA from corresponding conjugates. IAA-conjugates serve as a physiologically inactive storage form of IAA from which the active hormone can be quickly released on demand. Alternatively, conjugation of IAA can mark the first step of IAA catabolism. In general, conjugation and deconjugation of free IAA are ways to positively or negatively affect active hormone levels, which adds another level of complexity to the system. Additionally, IAA can be transported from cell to cell in a polar manner, which is dependent on the action of several transport proteins. All together, these means are used to form auxin gradients and local maxima that are essential to initiate plant growth processes, such as root or leaf primordia formation.3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号