首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
We use a new method called “product kernel estimator” to explore the spatial and temporal distribution of 9,114 recoveries of Teal (Anas crecca) ringed in Camargue, southern France, and recovered over the whole of Europe. This method allows exploration of the changes in time of the probability density to recover a ringed bird over a grid covering the study area. We thus identified two migration corridors for this species to the north and south of the Alps, whereas earlier analyses mostly suggested a southern route from Camargue, especially in spring. The northern route seems to be used to a greater extent in autumn than in spring, indicating a frequent abmigration (animals switching from one corridor to the other). Moreover, migration of the population seems faster in spring than in autumn. The simultaneous presence of Teal recoveries in many distinct geographical areas in spring is consistent with the idea that these ducks are not limited by their migratory speed in spring, nor do they wait until favorable environmental conditions before colonizing their breeding areas.  相似文献   

2.
Routes of migrating soaring birds   总被引:1,自引:0,他引:1  
YOSSI LESHEM  YORAM YOM-TOV 《Ibis》1998,140(1):41-52
Soaring migrants travelling through Israel use three principal routes which are used in the opposite directions during the spring and autumn: (1) the Western Route lies mainly along the western edge of the central mountain range, (2) the Eastern Route lies mainly along the Jordan Valley, crossing the mountain range during part of the day, continuing southward along the Dead Sea towards the Sinai, and joining the Western Route in autumn and (3) the Southern-Elat Mountains Route. The geomorphological structure of Israel, with a central mountain range dividing the country roughly into three landscape units, plays a central role in route selection. In the autumn, the Western Route migration axis is deflected at the beginning of the day from east to west for 10–25 km, depending on weather conditions and the flock's roosting locations. Between 10.00 h and 11.00 h, the daily breeze blowing from the Mediterranean Sea influences the migration axis, which is slowly deflected back to the east. A parallel deflection of the migration axis occurs in the Eastern Route in the autumn. The route moves southwest over the eastern slopes of the central mountain range during the morning hours and over the slope, which absorbs direct radiation from the sun, creating good soaring conditions. Towards late afternoon, when the breeze from the sea starts, the axis is deflected to the east, to the Jordan Valley. In the Elat Mountains, the wind flow plays a similar role, but because the topography of the southern Arava Valley causes a change in wind direction, the axis moves during the day in a north-south direction. In addition to the axis movement on a daily scale, a seasonal deflection of the migration axis from east to west also exists. During autumn migration, early migrants (e.g. White Storks Ciconia ciconia) tend to travel on an eastern route, while late migrants (e.g. White Pelican Pelecanus onocrotalus) travel along the Mediterranean coast. This fluctuation was probably because of sub-optimal soaring conditions along the coastal plain during August. In September, temperature differences between the sea and land decrease and the influence of the marine inversion gradually declines, until its influence disappears completely in October. A comparison of the numbers of soaring birds seen over Israel in the autumn and spring shows significant seasonal differences in the use of the various routes. For example, only one species, the Steppe Eagle Aquila nipalensis, flies over the Elat Mountains in the autumn, compared to more than 30 species in the spring. In the autumn, White Storks pass over only along the Jordan Valley axis, whereas in the spring, about half the migrating storks also pass over the western edge of the central mountain range. Honey Buzzards Pernis apivorus fly along the Western Route in large numbers in the autumn, while concentrating almost totally over the Elat Mountains in the spring. These differences are related to the global migration routes between the breeding and the wintering grounds in relation to the Red Sea, which birds avoid crossing, thus causing them to follow different routes in autumn, and spring.  相似文献   

3.
Summary The direction of the autumn and spring migration of short- and long-distance migrants over Frankfurt and spring migration of short-distance migrants over Hannover were studied by radar. For long-distance migrants, a comparison with results obtained from the Swiss Lowland revealed no difference in the direction of autumn migration but a 35° difference in the direction of spring migration. In Frankfurt the migration was more northerly. The difference in the migratory direction of short-distance migrants between central Germany and the Swiss Lowland ranged from 10° to 15° in spring and to 9° in autumn. The direction of spring migration can be understood as a simple 180° reversal of autumn migration in short-distance migrants, but not in long-distance migrants. The difference in the direction of the migratory axis (about 30°) among long-distance migrants between autumn and spring indicates that such birds follow different routes during their two seasonal, migratory journeys. The short- and long-distance migrants flew a similar direction in autumn. In spring, the short-distance migrants flew considerably more easterly compared to long-distance migrants. Wind influences, because of the seasonality of cyclonic weather systems, was much more likely to affect the migration of short-distance migrants in both autumn and spring. The effect of strong crosswinds on the direction of spring migration was examined.
Zusammenfassung Mittlere Zugrichtung und Windeinfluß auf Herbst- und Frühjahrszug von Kurz- und Langstreckenziehern wurden über Frankfurt und über dem Raum Hannover (nur Frühjahrszug) mit Hilfe von Radarbeobachtungen untersucht. Der Vergleich mit Ergebnissen vom Alpenrand ergab übereinstimmende Mittelrichtungen für den Herbstzug der Langstrecken-zieher, aber eine deutliche Differenz für dem Frühjahrszug (35°). In Frankfurt war der Zug stärker nach N gerichtet. Die Unterschiede bei den Kurzstreckenziehern betrugen im Frühjahr 10° bzw. 15° und im Herbst 9°. Der Frühjahrszug kann als Richtungsumkehrung des Herbstzuges bei den Kurzstreckenziehern, aber nicht bei den Langstreckenziehern interpretiert werden. Die Differenz zwischen den Zugachsen von Herbst- und Frühjahrszug betrug 30°. Sie wird als Indiz für unterschiedliche Zugrouten auf dem Herbst- und Frühjahrszug gewertet. Kurz- und Langstreckenzieher hielten auf dem Herbstzug ähnliche Zugrichtungen ein. Im Frühjahr zogen die Kurzstreckenzieher wesentlich stärker nach E als die Langstreckenzieher. Der Windeinfluß machte sich wegen der Saisonalität der Zyklonentätigkeit sowohl beim Frühjahrs- als auch beim Herbstzug der Kurzstreckenzieher stärker bemerkbar als bei den Langstreckenzieher. Der Einfluß der starken Seitenwinde auf die Richtungen des Frühjahrszuges wurde untersucht.
  相似文献   

4.
Monitoring studies find that the timing of spring bird migration has advanced in recent decades, especially in Europe. Results for autumn migration have been mixed. Using data from Powdermill Nature Reserve, a banding station in western Pennsylvania, USA, we report an analysis of migratory timing in 78 songbird species from 1961 to 2006. Spring migration became significantly earlier over the 46-year period, and autumn migration showed no overall change. There was much variation among species in phenological change, especially in autumn. Change in timing was unrelated to summer range (local vs. northern breeders) or the number of broods per year, but autumn migration became earlier in neotropical migrants and later in short-distance migrants. The migratory period for many species lengthened because late phases of migration remained unchanged or grew later as early phases became earlier. There was a negative correlation between spring and autumn in long-term change, and this caused dramatic adjustments in the amount of time between migrations: the intermigratory periods of 10 species increased or decreased by > 15 days. Year-to-year changes in timing were correlated with local temperature (detrended) and, in autumn, with a regional climate index (detrended North Atlantic Oscillation). These results illustrate a complex and dynamic annual cycle in songbirds, with responses to climate change differing among species and migration seasons.  相似文献   

5.
Ecological barriers such as oceans, mountain ranges or glaciers can have a substantial influence on the evolution of animal migration. Along the migration flyway connecting breeding sites in the North American Arctic and wintering grounds in Europe or Africa, nearctic species are confronted with significant barriers such as the Atlantic Ocean and the Greenland icecap. Using geolocation devices, we identified wintering areas used by ringed plovers nesting in the Canadian High‐Arctic and investigated migration strategies used by these nearctic migrants along the transatlantic route. The main wintering area of the ringed plovers (n = 20) was located in western Africa. We found contrasting seasonal migration patterns, with ringed plovers minimizing continuous flight distances over the ocean in spring by making a detour to stop in Iceland. In autumn, however, most individuals crossed the ocean in one direct flight from southern Greenland to western Europe, as far as southern Spain. This likely resulted from prevailing anti‐clockwise winds associated with the Icelandic low‐pressure system. Moreover, the plovers we tracked largely circumvented the Greenland icecap in autumn, but in spring, some plovers apparently crossed the icecap above the 65°N. Our study highlighted the importance of Iceland as a stepping‐stone during the spring migration and showed that small nearctic migrants can perform non‐stop transatlantic flights from Greenland to southern Europe.  相似文献   

6.
On their migratory journeys, terrestrial birds can come across large inhospitable areas with limited opportunities to rest and refuel. Flight over these areas poses a risk especially when wind conditions en route are adverse, in which case inhospitable areas can act as an ecological barrier for terrestrial migrants. Thus, within the east-Atlantic flyway, the North Sea can function as an ecological barrier. The main aim of this study was to shed light on seasonal patterns of bird migration in the southern North Sea and determine whether departure decisions on nights of intense migration were related to increased wind assistance. We measured migration characteristics with a radar that was located 18 km off the NW Dutch coast and used simulation models to infer potential departure locations of birds on nights with intense nocturnal bird migration. We calculated headings, track directions, airspeeds, groundspeeds on weak and intense migration nights in both seasons and compared speeds between seasons. Moreover, we tested if departure decisions on intense migration nights were associated with supportive winds. Our results reveal that on the intense migration nights in spring, the mean heading was towards E, and birds departed predominantly from the UK. On intense migration nights in autumn, the majority of birds departed from Denmark, Germany and north of the Netherlands with the mean heading towards SW. Prevailing winds from WSW at departure were supportive of a direct crossing of the North Sea in spring. However, in autumn winds were generally not supportive, which is why many birds exploited positive wind assistance which occurred on intense migration nights. This implies that the seasonal wind regimes over the North Sea alter its migratory dynamics which is reflected in headings, timing and intensity of migration.  相似文献   

7.
Tracking migratory movement of small animals with variable migration patterns is difficult with standard mark–recapture methods or genetic analysis. We used stable hydrogen isotope (δD) measurements of wings from European red admirals Vanessa atalanta to study several aspects of this species’ migration. In the central part of southern Europe we found large differences in δD values between red admirals sampled in autumn and spring supporting the hypothesis that reproduction takes place in the Mediterranean region during winter. There was also an apparent influx to southern Europe in the spring of individuals with a more southerly origin, since many samples had higher δD values and similar to those expected from coastal areas of North Africa. We found a clear seasonal difference in the δD values of red admirals sampled in northern Europe. Spring migrants arriving in northern Europe generally had high δD values that indicated a southerly origin. In autumn, δD values suggested that red admirals were mostly from regions close to the sampling sites, but throughout the sampling period there were always individuals with δD values suggesting non‐local origins. The migration pattern of this species is supposedly highly variable and plastic. δD differences between individuals in the western part of Europe were generally small making migratory patterns difficult to interpret. However, butterflies from western Europe were apparently isolated from those from north‐eastern Europe, since δD values in the western region rarely corresponded to those of autumn migrants from the north‐east. Use of δD data for inferring butterfly migration in Europe is complex, but our study showed that this technique can be used to help uncover previously unknown aspects of red admiral migration.  相似文献   

8.
The blackcap Sylvia atricapilla shows a complex migratory pattern and is a suitable species for the studies of morphological migratory syndrome, including adaptations of wing shape to different migratory performance. Obligate migrants of this species that breed in northern, central, and Eastern Europe differ by migration distance and some cover shorter distance to the wintering grounds in the southern part of Europe/North Africa or the British Isles, although others migrate to sub-Saharan Africa. Based on ˃40 years of ringing data on blackcaps captured during autumn migration in the Southern Baltic region, we studied age- and sex-related correlations in wing pointedness and wing length of obligate blackcap migrants to understand the differences in migratory behavior of this species. Even though the recoveries of blackcaps were scarce, we reported some evidence that individuals which differ in migration distance differed also in wing length. We found that wing pointedness significantly increased with an increasing wing length of migrating birds, and adults had longer and more pointed wings than juvenile birds. This indicates stronger antipredator adaptation in juvenile blackcaps than selection on flight efficiency, which is particularly important during migration. Moreover, we documented more pronounced differences in wing length between adult and juvenile males and females. Such differences in wing length may enhance a faster speed of adult male blackcaps along the spring migration route and may be adaptive when taking into account climatic effects, which favor earlier arrival from migration to the breeding grounds.  相似文献   

9.
Migrating birds require en route habitats to rest and refuel. Yet, habitat use has never been integrated with passage to understand the factors that determine where and when birds stopover during spring and autumn migration. Here, we introduce the stopover‐to‐passage ratio (SPR), the percentage of passage migrants that stop in an area, and use 8 years of data from 12 weather surveillance radars to estimate over 50% SPR during spring and autumn through the Gulf of Mexico and Atlantic coasts of the south‐eastern US, the most prominent corridor for North America’s migratory birds. During stopovers, birds concentrated close to the coast during spring and inland in forested landscapes during autumn, suggesting seasonal differences in habitat function and highlighting the vital role of stopover habitats in sustaining migratory communities. Beyond advancing understanding of migration ecology, SPR will facilitate conservation through identification of sites that are disproportionally selected for stopover by migrating birds.  相似文献   

10.
IDO IZHAKI  ASAF MAITAV 《Ibis》1998,140(2):223-233
Migrating Blackcaps Sylvia atricapilla were mist netted at the desert edge in northern Israel and in Elat (southern Israel) during spring and autumn migrations between 1970 and 1991. Birds in spring in northern Israel were representative of birds that had completed the crossing of the Sahara, while those in Elat still had to cross the 150 km of the Negev Desert, which separates Elat and northern Israel. In autumn, birds captured in northern Israel were representative of those about to cross the Sahara Desert, while those in Elat had already started to cross the desert. The data allowed analysis of seasonal and location differences in the physiological state of Blackcaps before and after crossing the Sahara. Data analysed included body mass, visible fat score and calculated fat content. Autumn migrants were in better physiological condition than spring migrants at both locations, probably as a consequence of their migration route through fertile areas in autumn compared with the crossing of the Sahara in spring. Body mass was less variable after the Sahara crossing in spring than before the crossing in autumn. In spring, 71% and 67% of the birds were fat depleted (fat scores 0 and 1) at Elat and in northern Israel, respectively, while in autumn 34% and 42% were fat depleted. Blackcaps at Elat were 1.6 g lighter than those in northern Israel in autumn and 1.9 g lighter in spring. Potential flight ranges were estimated on the basis of meteorological conditions and flight altitude of passerines above the Negev in Israel (northern Sahara edge) during migration and on a simulation model that considered both energy and water as potential limiting factors for flight duration and distance. The simulation model predicted that half of the Blackcaps that stopped over in Elat and the majority of those that stopped over in northern Israel could not make a nonstop flight over the Sahara Desert in autumn without the assistance of at least an 8 m per s tailwind. Such a wind would still not be sufficient for 34% of the birds in Elat and 42% in northern Israel, and clearly they had insufficient fat reserves to cross the Sahara in a single flight. Although the fattest Blackcaps had accumulated sufficient fat to enable them to traverse the Sahara in a single flight, they probably faced dehydration by at least 12% of their initial body mass when they reached the southern Sahara edge. These birds should use intermittent migration with stopovers at sites with drinking and feeding potential. Their decision to stop over during the day in the desert at sites with shade but without food and water would be beneficial if the meteorological conditions during daytime migration imposed greater risks of dehydration than at night. Spring migrants could not reach their breeding areas in Europe without feeding, but those examined in Elat could cross the remainder of the desert in a single flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号