首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical potentials from the eye (ERG) and from the contralateral visual cortex were recorded in response to flashes of white and of colored light of various intensities and durations. The evoked potentials were found to parallel the behavior of the ERG in several significant respects. Selective changes in the ERG brought about by increasing the light intensity and by light adaptation led to parallel selective changes in the cortical responses. The dual waves (b1, b2) of the ERG were found to have counterparts in two cortical waves (c1, c2) which, in respect to changes in light intensity and to light adaptation, behaved analogously to the two retinal components. The responses evoked at high intensity showed only the diphasic c1-potential. As stimulus intensity was lowered the c1-wave decreased in magnitude and a delayed c2-component appeared. The c2-potential increased in amplitude as light intensity of the flash was further reduced. Eventually the c2-wave, too, decreased as stimulus reduction continued. There was no wave length specificity in regard to either the duplex b-waves or duplex cortical waves. Both appeared at all wave lengths from 454 mµ to 630 mµ. The two cortical waves evoked by brief flashes of colored light showed all the behavior to changes in stimulus intensity and to light adaptation that occurred with white light.  相似文献   

2.
In summation and averaging of sections of the EEG of sensorimotor cortex of both cerebral hemispheres recorded during human static effort of definite duration, a complex of negative-positive oscillations was observed. These oscillations appear before the beginning of the effort, accompany its execution and finishing and are also recorded after cessation of muscles activity. Before the beginning, the potential of readiness is formed. The execution of the effort is accompanied by a slow negative wave which in some people may be broken by a pronounced positivity. Further a "final" potential appears; its fast positive oscillation is formed before the end of the effort, and a slow negative wave in which it turns, appears only after muscles relaxation.  相似文献   

3.
Neural and Photochemical Mechanisms of Visual Adaptation in the Rat   总被引:20,自引:13,他引:7       下载免费PDF全文
The effects of light adaptation on the increment threshold, rhodopsin content, and dark adaptation have been studied in the rat eye over a wide range of intensities. The electroretinogram threshold was used as a measure of eye sensitivity. With adapting intensities greater than 1.5 log units above the absolute ERG threshold, the increment threshold rises linearly with increasing adapting intensity. With 5 minutes of light adaptation, the rhodopsin content of the eye is not measurably reduced until the adapting intensity is greater than 5 log units above the ERG threshold. Dark adaptation is rapid (i.e., completed in 5 to 10 minutes) until the eye is adapted to lights strong enough to bleach a measurable fraction of the rhodopsin. After brighter light adaptations, dark adaptation consists of two parts, an initial rapid phase followed by a slow component. The extent of slow adaptation depends on the fraction of rhodopsin bleached. If all the rhodopsin in the eye is bleached, the slow fall of threshold extends over 5 log units and takes 2 to 3 hours to complete. The fall of ERG threshold during the slow phase of adaptation occurs in parallel with the regeneration of rhodopsin. The slow component of dark adaptation is related to the bleaching and resynthesis of rhodopsin; the fast component of adaptation is considered to be neural adaptation.  相似文献   

4.
A generalized conceptual model of oscillatory transpirationin a cotton plant growing in a nutrient solution under constantenvironmental conditions is presented. The model is based uponthe results and observations of an experimental study and thecontemporary literature. It incorporates the values of parameters,of initial and boundary conditions, and of significant variablesin the transpiration stream. A non-linear coupling consistingof a hysteresis loop with a time-variant constraint acting betweenthe guard cell potential and stomatal resistance is proposed.Mathematical equations based upon the network variables weresolved via a simulation language (CSMP—IBM/360). The modelshowed gradually damped oscillations early in the light periodand sustained oscillations later in the light period. The resultingsimulation output agrees satisfactorily with pattern of oscillationsobserved in vivo. Root resistance changes through the day causedminimal effect on oscillation. The principal causal effect foroscillatory behaviour appeared to be due to stomatal effects.  相似文献   

5.
Vasomotion, the phenomenon of vessel diameter oscillation, regulates blood flow and resistance. The main parameters implicated in vasomotion are particularly the membrane potential and the cytosolic free calcium in smooth muscle cells. In this study, these parameters were measured in rat perfused-pressurized mesenteric artery segments. The application of norepinephrine (NE) caused rhythmic diameter contractions and membrane potential oscillations (amplitude; 5.3 +/- 0.3 mV, frequency; 0.09 +/- 0.01 Hz). Verapamil (1 microM) abolished this vasomotion. During vasomotion, 10(-5) M ouabain (Na(+)-K(+) ATPase inhibitor) decreased the amplitude of the electrical oscillations but not their frequency (amplitude; 3.7 +/- 0.3 mV, frequency; 0.08 +/- 0.002 Hz). Although a high concentration of ouabain (10(-3) M) (which exhibits non-specific effects) abolished both electrical membrane potential oscillations and vasomotion, we conclude that the Na+-K+ ATPase could not be implicated in the generation of the membrane potential oscillations. We conclude that in rat perfused-pressurized mesenteric artery, the slow wave membrane type of potential oscillation by rhythmically gating voltage-dependent calcium channels, is responsible for the oscillation of intracellular calcium and thus vasomotion.  相似文献   

6.
Light Adaptation in the Ventral Photoreceptor of Limulus   总被引:4,自引:4,他引:0       下载免费PDF全文
Light adaptation in both the ventral photoreceptor and the lateral eye photoreceptor is a complex process consisting of at least two phases. One phase, which we call the rapid phase of adaptation, occurs whenever there is temporal overlap of the discrete waves that compose a light response. The recovery from the rapid phase of adaptation follows an exponential time-course with a time constant of approximately 75 ms at 21°C. The rapid phase of adaptation occurs at light intensities barely above discrete wave threshold as well as at substantially higher light intensities with the same recovery time-course at all intensities. It occurs in voltage-clamped and unclamped photoreceptors. The kinetics of the rapid phase of adaptation is closely correlated to the photocurrent which appears to initiate it after a short delay. The rapid phase of adaptation is probably identical to what is called the "adapting bump" process. At light intensities greater than about 10 times discrete wave threshold another phase of light adaptation occurs. It develops slowly over a period of ½ s or so, and decays even more slowly over a period of several seconds. It is graded with light intensity and occurs in both voltage-clamped and unclamped photoreceptors. We call this the slow phase of light adaptation.  相似文献   

7.
Various drosophila mutants were used to dissect the electroretinogram (ERG) frequency response into components of different origins. The ommochrome granules in the receptor cell body are known to migrate in response to light, limiting the amount of light entering the rhabdomere. Comparison between the ERG frequency responses of the wild type and the mutant lacking the ommochrome granules indicates that the pigment migration reduces the amplitude gain at frequencies below 0.5 Hz. The ERG of drosophila compound eyes consists of contributions from receptor cells and the second-order cells in the lamina. Mutants with defective laminae showed a high-frequency cutoff with a corner frequency of about 20 Hz, while in wild type the response peaked in that frequency region. These results suggest that the lamina contributes mainly to the high-frequency components of the ERG transfer function. The shot noise model (Dodge et al., 1968) has been tested in drosophila by comparing the frequency response of the superimposed on the intracellular receptor potential. The results are consistent with the hypothesis that the receptor potential consists of a summation of small discrete potentials (bumps). In a mutant in which the bumps exhibit latency dispersion in response to a dim flash, the receptor showed a poor high-frequency response, the corner frequency being lowered to about 1-2 Hz. The slope of the cutoff was approximately 20 dB/dec indicating that the latency dispersion in this mutant is the major limiting factor in temporal resolution. Light-evoked high frequency oscillations have been observed in the ERG of another mutant. The oscillation was found sharply turned to light flickering at about 55 Hz.  相似文献   

8.
The oscillation behavior of delayed luminescence was addressed using the earlier proposed mathematical model [Karavaev and Kukushkin, Biofizika 38, 958 (1993)]. The oscillation frequency and damping factor were calculated by Lyapunov analysis. In calculations, each of the model parameters was varied in a broad range. The results suggest that, besides the oscillation mode observed experimentally, there may be other oscillations that are more rapidly damped. Analysis of how variation in the model parameters affects the CO2 fixation rate has shown that CO2 assimilation differently depends on the light absorbed by photosystems I and II.  相似文献   

9.
A slow oscillation of sympathetic vasoconstriction (Mayer waves) which is affected by the respiratory movements seems to appear as the fluctuation of pulse wave amplitude (PPG.P-P) in the frequency domain (0.1 Hz). Whether the vasomotor in low frequency has appeared in the pulse wave of the neonate and whether Mayer waves appear as the pulse wave oscillation of the immature low-birth-weight neonate are not fully understood from the point of autonomic nerve regulation mechanism. We therefore analyzed the frequency characteristics of PPG.P-P, respiration wave and its amplitude (RW.P-P) together with the heart rate variability (HRV) to examine the relationships between the frequency spectra.  相似文献   

10.
The propagation of vibrations along the trunk and branches of a manuka tree, generated in response to the impact of a steel ball-bearing on the trunk, was measured with an accelerometer. The impact generated bending waves which travelled along the trunk and into the branches. Close to the point of impact the waveform was dominated by a damped oscillation at 518 Hz; as the bending wave progressed away from the point of impact the frequency of the dominant waveform increased. Beyond 200 cm the waveform became increasingly complex and a smallamplitude, high-frequency component progressively preceded the main wave. Branching points also induced complex waveforms, particularly where branches lay at a large angle to the trunk. Stridulating wetas also generated bending waves in the tree at a frequency close to that generated by the ball-bearing, as well as at a higher frequency of 7.5 kHz. The acoustic frequency of stridulation peaked at 0.8 and 3.4 kHz. Records from nerves serving the vibration-sensitive subgenual organs showed that wetas can detect oscillations at 1 kHz at 0.015ms-2. A stridulating weta placed on the same log as a preparation in which the nerve from the subgenual organ was monitored generated oscillatins well above the threshold for detection.  相似文献   

11.
Vitamin B12 has been reported to improve sleep-wake rhythm disorders. Although the mechanism is still unclear, a change in the sensitivity of the circadian clock system to photic input is thought to be a possible mechanism of the effect. In this study, the effect of the vitamin B12 on the circadian aspect of the electroretinogram (ERG) and serum melatonin level was analyzed in rats. Vitamin B12, α-(5,6-dimethylbenzimidazolyl)-co-methyl-cobamide was daily administrated subcutaneously for 8 weeks to adult male Wister rats in the experimental group, and saline was given to the control group. The ERGs were recorded under dark adaptation during the night and day, and under light adaptation (0.1 lux) during the night. Blood was drawn before and after ERG recording. The amplitudes of the a-wave, fc-wave, and trough-to-peak of both waves and latencies of ERG were analyzed following various exposures to stimuli of light intensity. These parameters in the group treated with vitamin B12 showed similar characteristics to the control group, and no significant difference was observed between the two groups. The melatonin levels of both groups before the measurement of ERG were similar under each measurement condition. The elevated serum melatonin concentration in the control group under dark adaptation at night was suppressed after the series of 10-msec light stimuli used for measurement of ERG. However, this suppressing effect of light pulses on melatonin level was significantly inhibited in the group treated with vitamin B12. Under light adaptation during the night and under dark adaptation during the day, melatonin levels after the measurement of ERG were not different between the groups. From these results, it is suggested that vitamin B12 is effective in suppressing melatonin rhythm disturbances introduced by transient light stimulation, and it affects the site more central than the retinal level. (Chronobiology International, 14(6), 549–560, 1997)  相似文献   

12.
1. The effect of extirpation of the optic ganglion on the ERG and on electrical oscillations recorded from the compound eye was determined. 2. Extirpation of the optic ganglion prevents the occurrence of oscillations, and it is concluded that they originate in the ganglion. 3. Extirpation of the optic ganglion changes the wave form of the ERG. The sharpness of the b-wave is decreased, the relative magnitude of the c-wave is increased, and the d-wave is obliterated. These changes can be explained by assuming that the ERG is the algebraic sum of two potential changes, one in the compound eye, and another, of opposite sign in the ganglion. This assumption is supported by data from a number of experiments in which the electrode positions were varied. 4. The explanation of the present data (which indicates two sites of origin of the ERG) is similar to the three-component theory which accounts for the complex wave form of the vertebrate ERG.  相似文献   

13.
In an in vitro model for distention-induced peristalsis in the guinea pig small intestine, the electrical activity, intraluminal pressure, and outflow of contents were studied simultaneously to search for evidence of myogenic control activity. Intraluminal distention induced periods of nifedipine-sensitive slow wave activity with superimposed action potentials, alternating with periods of quiescence. Slow waves and associated high intraluminal pressure transients propagated aborally, causing outflow of content. In the proximal small intestine, a frequency gradient of distention-induced slow waves was observed, with a frequency of 19 cycles/min in the first 1 cm and 11 cycles/min 10 cm distally. Intracellular recording revealed that the guinea pig small intestinal musculature, in response to carbachol, generated slow waves with superimposed action potentials, both sensitive to nifedipine. These slow waves also exhibited a frequency gradient. In addition, distention and cholinergic stimulation induced high-frequency membrane potential oscillations (~55 cycles/min) that were not associated with distention-induced peristalsis. Continuous distention produced excitation of the musculature, in part neurally mediated, that resulted in periodic occurrence of bursts of distally propagating nifedipine-sensitive slow waves with superimposed action potentials associated with propagating intraluminal pressure waves that caused pulsatile outflow of content at the slow wave frequency.  相似文献   

14.
B. Novak  H. Greppin 《Planta》1979,144(3):235-240
The microelectrode technique was used to follow oscillations in membrane potential in mesophyll cells of spinach (Spinacia oleracea L.) during exposure do different photoperiodic conditions. Both high-frequency oscillations and circadian variations were observed. The circadian rhythm was imposed on the period of high-frequency oscillation during short days as well as in continuous light: The free-running period was 25.2 h. The average period of high-frequency oscillation increased from 7.64 min in the dark to 19.95 min in the light within several minutes after dark to light transition. This period length coincides with the established period length for oscillations in the redox potential in the chloroplast suspensions of spinach.Abbreviations CL continuous light - SD short day - MP membrane potential  相似文献   

15.
In the chamber with one-way avoidance, the latency of avoidance reaction was repeatedly evaluated every 30 s. Chronograms revealed clear minute latencies fluctuations. Some rats had a short (1-2.5 min) biorhythm period, others--a much longer one (10 min and more). The structure of rhythmic oscillations correlated with the ability of animals to relearning in the Y-maze. At slow oscillation process, the relearning was more difficult. d,l-amphetamine in a dose eliciting stereotype movements, impeded the relearning, and this coincided with prevailing of slow waves on chronograms.  相似文献   

16.
The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions--are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions.  相似文献   

17.
Scotopic vision is the result of a cascade of light-dependent biochemical events in rod outer segments (ROS) involving mainly a cGMP-modulation of sodium current. This modification of ionic currents induces changes of membrane potential which generates electroretinographic (ERG) waves. As (i) ERG disturbances are commonly recorded in hypoxic and inflammatory retinal diseases (ii) leukotrienes (LTs), a very potent mediators of inflammation, disturb ionic exchanges several artificial or natural membrane systems, we undertook the investigation of the effects of LTs on ERG record in mammalian isolated retina. LTB4, LTC4 and LTD4, all induced a dose-dependent marked reduction of the b wave amplitude of ERG. This effect is correlated with a significant decrease in the survival time of the retina. The analysis of the modification of ERG indicates that LTs exhibit a real toxic effect since b wave is mainly affected while P III wave is unchanged. Comparatively with other nervous cells, this phenomenon may be attributed to an increase in Na+ permeability of ROS. It is suggested that LTs may be involved in the development of inflammatory or ischemic retinal diseases.  相似文献   

18.
Visual Adaptation in the Retina of the Skate   总被引:21,自引:16,他引:5  
The electroretinogram (ERG) and single-unit ganglion cell activity were recorded from the eyecup of the skate (Raja erinacea and R. oscellata), and the adaptation properties of both types of response compared with in situ rhodopsin measurements obtained by fundus reflectometry. Under all conditions tested, the b-wave of the ERG and the ganglion cell discharge showed identical adaptation properties. For example, after flash adaptation that bleached 80% of the rhodopsin, neither ganglion cell nor b-wave activity could be elicited for 10–15 min. Following this unresponsive period, thresholds fell rapidly; by 20 min after the flash, sensitivity was within 3 log units of the dark-adapted level. Further recovery of threshold was slow, requiring an additional 70–90 min to reach absolute threshold. Measurements of rhodopsin levels showed a close correlation with the slow recovery of threshold that occurred between 20 and 120 min of dark adaptation; there is a linear relation between rhodopsin concentration and log threshold. Other experiments dealt with the initial unresponsive period induced by light adaptation. The duration of this unresponsive period depended on the brightness of the adapting field; with bright backgrounds, suppression of retinal activity lasted 20–25 min, but sensitivity subsequently returned and thresholds fell to a steady-state value. At all background levels tested, increment thresholds were linearly related to background luminance.  相似文献   

19.
The purpose of this work was to study the catalytic properties of rat butyrylcholinesterase with benzoylcholine (BzCh) and N-alkyl derivatives of BzCh (BCHn) as substrates. Complex hysteretic behaviour was observed in the approach to steady-state kinetics for each ester. Hysteresis consisted of a long lag phase with damped oscillation. The presence of a long lag phase, with no oscillations, in substrate hydrolysis by rat butyrylcholinesterase was also observed with N-methylindoxyl acetate as substrate. Hysteretic behaviour was explained by the existence of two interconvertible butyrylcholinesterase forms in slow equilibrium, while just one of them is catalytically active. The damped oscillations were explained by the existence of different substrate conformational states and/or aggregates (micelles) in slow equilibrium. Different substrate conformational states were confirmed by 1H-NMR. The K(m) values for substrates decreased as the length of the alkyl chain increased. High affinity of the enzyme for the longest alkyl chain length substrates was explained by multiple hydrophobic interactions of the alkyl chain with amino acid residues lining the active site gorge. Molecular modelling studies supported this interpretation; docking energy decreased as the length of the alkyl chain increased. The long-chain substrates had reduced k(cat) values. Docking studies showed that long-chain substrates were not optimally oriented in the active site for catalysis, thus explaining the slow rate of hydrolysis. The hydrolytic rate of BCH12 and longer alkyl chain esters vs. substrate concentration showed a premature plateau far below V(max). This was due to the loss of substrate availability. The best substrates for rat butyrylcholinesterase were short alkyl homologues, BzCh - BCH4.  相似文献   

20.
The relationship between slow waves and peristaltic reflexes has not been well analyzed. In this study, we have recorded the electrical activity of slow waves together with that generated by spontaneous peristaltic contractions at 240 extracellular sites simultaneously. Recordings were made from five isolated tubular and six sheet segments of feline duodenum superfused in vitro. In all preparations, slow waves propagated as broad wave fronts along the longitudinal axis of the preparation in either the aborad or the orad direction. Electrical potentials recorded during peristalsis (peristaltic waves) also propagated as broad wave fronts in either directions. Peristaltic waves often spontaneously stopped conducting (46%), in contrast to slow waves that never did. Peristaltic waves propagated at a lower velocity than the slow waves (0.98 +/- 0.25 and 1.29 +/- 0.28 cm/s, respectively; P < 0.001; n = 24) and in a direction independent of the preceding slow wave direction (64% in the same direction, 46% in the opposite direction). In conclusion, slow waves and peristaltic waves in the isolated feline duodenum seem to constitute two separate electrical events that may drive two different mechanisms of contraction in the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号