首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Singing muscles of the katydid, Neoconocephalus robustus (Insecta, Tettigoniidae) are neurogenic, yet perform at contraction-relaxation frequencies as high as 212 Hz (Josephson and Halverson, '71). The mechanical and electrical responses of different bands of one of these muscles (the dorsal longitudinal muscle, DLM) has been examined with respect to ultrastructural features of each part which may be related to muscle performance. The DLM is composed of three bands and is innervated by four motoneurones. The cell bodies of three of these motoneurones occur ipsilaterally in the prothroracic ganglion; the cell body of the other motoneurone is contralateral in the mesothoracic ganglion. Three of the motoneurones (as yet unidentified fast axons) initiate extraordinarily fast twitches (rise time equal 7.3 msec, half duration equals 14.3 msec, 25 C), the fourth (an unidentified slower axon) evokes twitches which are considerably slower (rise time equals 18.9 msec, half duration equals 5.10 msec). Whereas the ventral and medial bands of the muscle are innervated only by fast axons (some fibers of the medial band are doubly innervated), the dorsal band is innervated by both a fast axon and the slower axon. A few fibers of the dorsal band are doubly innervated. The structure of fibers from the ventral and medial bands is very similar, with short sarcomeres (4.0 and 4.3 mum, respectively) and thin strap-like myofibrils delineated by well-developed sarcoplasmic reticulum (SR). Twenty-four percent of the volume of ventral band fibers is SR and the diffusion distance from SR to the center of the adjacent myofibril averages 0.083 mum. Twenty percent of the medial band fiber volume is SR, with a diffusion distance of 0.118 mum. Ventral and medial band fibers contain about 40% mitochondria, and 33% myofibrils. The dorsal band fibers have longer sarcomeres (9.5 mum), and only 10% of the fiber volume is SR. The muscle fibrils of the dorsal band are larger and consequently the diffusion distance is greater (0.227 mum) than in the ventral and medial bands. Mitochondria comprise 23% of the volume of dorsal band fibers. Most dorsal band mitochondria are aggregated into distinct clumps. Although some dorsal band fibers are innervated by a fast axon and some by the slower axon, the dorsal band fibers are structurally homogeneous, suggesting that neurotrophic effects are not important in maintaining the structure of dorsal band fibers. The mechanical-electrical performance and ultrastructure of the ventral and medial bands suggest their roll as fast, metabolically active but weak muscles, used in singing; the dorsal band as a slower but stronger muscle, perhaps involved in postural movements of the wing during singing.  相似文献   

2.
The exoskeletal morphology, muscular organization, and innervation patterns of the tymbals of seven sound-producing species of tiger moths (Arctiidae) were compared with the undifferentiated episterna of two silent species. At least three muscles are involved in sound production: the tymbal muscle, pv2, and the accessory muscles, pvl and/or pv6. All of the tymbal muscles are innervated by the IIIN2a branch of the metathoracic leg nerve, which contains two axons larger than the others. Backfills of the tymbal branch of the IIIN2a reveal a medial sensory neuropil and a population of five ipsilateral motor neurons whose somata are clustered into three groups along the anterior edge of the metathoracic ganglion. The dendritic arborizations of the motor neurons extend to the ganglionic midline but are separate from one part of the auditory neuropil observed in other noctuoids. The study concludes that the arctiid tymbal reveals only minor modifications (e.g., cuticle thinning) of the episterna of silent moths and represents a primitive form of the tymbal compared to those of the Cicadidae.  相似文献   

3.
Abstract. A light and transmission electron microscope study of sections of cells of—and of cells and tissues of—and of cells, associated with the previously undescribed tymbal muscle of a periodical cicada (Brood X of the 17-year cicada) was undertaken to (i) compare their features with similar features described for other cicada tymbal muscles, (ii) use that information to try to determine cytologically whether the muscle should be considered synchronous or asynchronous, and (iii) seek information about ultrastructural features not previously described for any cicada. In cross section the myofibrils are slightly angular and have an abundance of sarcoplasmic reticulum and T tubules. Longitudinal sections show a pair of T tubules, one of each pair located midway between the Z line and the center (H level) of each sarcomere. These cytological features are consistently found in the tymbal muscles of the majority of other cicada genera and species, which are designated synchronous muscles, and all of which are termed fast muscles. The amount of sarcoplasmic reticulum increases at the Z lines. The largest mitochondria occur in the largest axons, but the smallest axons have more neurotubules per cross-section area. Axon diameters range 0.14–20 μm. Multinucleate adipocytes, with vacuoles that appear either empty or content-containing, and tracheocytes, which could either be binucleate or have a lobate or U-shaped nucleus, are located at the periphery of the muscle. Large numbers of microtubules occur in the interface glia. The diameters of microtubules and neurotubules (∼27 nm) agree closely with the averages usually cited. This study indicates that the tymbal muscles of this cicada should be designated as synchronous, and it describes ultrastructural features that are typical and others that are unusual.  相似文献   

4.
Sound production that is mediated by intrinsic or extrinsic swim bladder musculature has evolved multiple times in teleost fishes. Sonic muscles must contract rapidly and synchronously to compress the gas‐filled bladder with sufficient velocity to produce sound. Muscle modifications that may promote rapid contraction include small fiber diameter, elaborate sarcoplasmic reticulum (SR), triads at the A–I boundary, and cores of sarcoplasm. The diversity of innervation patterns indicate that sonic muscles have independently evolved from different trunk muscle precursors. The analysis of sonic motor pathways in distantly related fishes is required to determine the relationships between sonic muscle evolution and function in acoustic signaling. We examined the ultrastructure of sonic and adjacent hypaxial muscle fibers and the distribution of sonic motor neurons in the coral reef Pyramid Butterflyfish (Chaetodontidae: Hemitaurichthys polylepis) that produces sound by contraction of extrinsic sonic muscles near the anterior swim bladder. Relative to adjacent hypaxial fibers, sonic muscle fibers were sparsely arranged among the endomysium, smaller in cross‐section, had longer sarcomeres, a more elaborate SR, wider t‐tubules, and more radially arranged myofibrils. Both sonic and non‐sonic muscle fibers possessed triads at the Z‐line, lacked sarcoplasmic cores, and had mitochondria among the myofibrils and concentrated within the peripheral sarcoplasm. Sonic muscles of this derived eutelost possess features convergent with other distant vocal taxa (other euteleosts and non‐euteleosts): small fiber diameter, a well‐developed SR, and radial myofibrils. In contrast with some sonic fishes, however, Pyramid Butterflyfish sonic muscles lack sarcoplasmic cores and A–I triads. Retrograde nerve label experiments show that sonic muscle is innervated by central and ventrolateral motor neurons associated with spinal nerves 1–3. This restricted distribution of sonic motor neurons in the spinal cord differs from many euteleosts and likely reflects the embryological origin of sonic muscles from hypaxial trunk precursors rather than occipital somites. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The functional capacity of skeletal muscle sarcoplasmic reticulum (SR) was examined in the slow soleus of rats submitted to 15 days of disuse produced by hindlimb suspension (HS). By using caffeine-induced contractions of single skinned fibers, Ca2+ uptake, Ca2+ release, and passive Ca2+ leakage through the SR membrane were investigated. In the SR of atrophied muscles, the amounts of Ca2+ uptake and Ca2+ release were significantly higher than in the control muscles and were close to those found for a fast muscle, the plantaris. Moreover, the study of the Ca2+ leakage showed that the time required to empty the SR previously loaded with Ca2+ was reduced by a factor of two after HS. Such disturbances of the Ca2+ movements in the SR suggested that alterations of the SR membrane occurred after HS. The results supported the idea that after hindlimb unweighting the slow soleus muscle acquired SR properties that were very much like those of a faster muscle.  相似文献   

6.
M. Cristina Faccioni-Heuser, Denise M. Zancan, Christiane Q. Lopes and Matilde Achaval. 1999. The pedal muscle of the land snail Megalobulimus oblongus (Gastropoda, Pulmonata): an ultrastructure approach. — Acta Zoologica (Stockholm) 80: 325–337
The ultrastructure of the pedal muscle of the Megalobulimus oblongus is described. This muscle consists of transverse, longitudinal and oblique bundles ensheathed in collagenous tissue. Each muscle cell is also ensheathed by collagen. The smooth muscle cells contain thin and thick filaments; the thin filaments are attached to dense bodies. These cells contain a simple system of sarcoplasmic reticulum, subsarcolemmal caveolae and mitochondria with dense granules in the matrix, and glycogen. Three types of muscle cells were identified. Type A cells exhibited densely packed myofilaments, abundant glycogen rosettes, numerous mitochondria and sarcoplasmic reticulum profiles. Type B cells exhibited scanty glycogen and mitochondria, few cisternae of sarcoplasmic reticulum and large intermyofibrillar spaces. Type C cells exhibited intermediate characteristics between type A and type B cells. Neither nexus nor desmosomes were observed between the muscle cell membranes. The muscle contains well developed connective tissue and blood vessels. These structures and the distribution of muscle cells are probably involved in the muscular-hydrostat system. The muscle is richly innervated, having neuromuscular junctions with clear and electron-dense synaptic vesicles. The clear vesicles probably contain acetylcholine because the axons to which they are connected arise from acetylcholinesterase positive neurones of the pedal ganglion. The other vesicles may secrete monoamines such as serotonin and/or neuropeptides such as substance P.  相似文献   

7.
Isometric twitch characteristics and biochemical parameters of isolated myosin and sarcoplasmic reticulum have been compared in three cat hind limb muscles. The fast twitch caudofemoralis and the slow twitch soleus are almost pure muscles as judged from histochemical studies. Isolated myosin from the caudofemoralis is not only 2- to 3-fold higher in its ATPase activities than that of the soleus, but also in non-dissociated forms has greater electrophoretic mobility than the soleus myosin. Purified myosins from fast muscles as well as soleus exhibited three light chains upon electrophoresis. However, the intact non-solubilized myosins differed in electrophoretic mobilities. The sarcoplasmic reticulum fraction isolated from caudfemoralis exhibits faster rates of Ca++ binding and uptake than soleus, and when fit to a two component model, the caudofemoralis SR exhibits a higher amount of a fast binding site than does soleus SR, features reflected in differences in the relaxation time of the two muscles. In contrast, the fast twitch tibialis anterior has been shown to be a gradient of fiber types and its isometric twitch may be separated by selective nerve stimulation, into a fast and a slow twitch component. Our findings that myosin fractions, as well as sarcoplasmic reticulum fractions isolated from these two components differ with respect to their biochemical characteristics add support to the possibility of a dual function in this muscle.  相似文献   

8.
Fiber Ultrastructure and Contraction Kinetics in Insect Fast Muscles   总被引:1,自引:1,他引:0  
SYNOPSIS. Isometric contraction kinetics were measured and fiberstructure was quantified in tymbal muscles from different cicadaspecies. Twitch duration is directly correlated with the sizeof the myofibrils and with the ratio of the fraction of fibervolume which is myofibril to that which is sarcoplasmic reticulum(SR) and T-tubules (fast muscles have small myofibrils and arelatively large volume of SR and T-tubules). Twitch durationis not significantly correlated with fiber size, with sarcomerelength, nor with the fractional volume of the fibers which ismitochondria, indicating that these structural features arenot strongly involved in the determination of isometric contractionkinetics. In the tettigoniid Neoconocephalus robustus, twitchesfrom forewing muscles of male animals become progressively shorterover the first five days following the adult molt. This changein contraction kinetics is associated with an increase in therelative volume of SR and T-tubules. Denervation blocks theacquisition of rapid kinetics, indicating that neural inputis necessary for this transformation.  相似文献   

9.
Summary The singing muscles of the katydid Neoconocephalus robustus develop adult ultrastructure late in the last nymphal instar and during the first few days of adult life. The ultrastructural changes during early adulthood were not affected by unilateral axotomy shortly after the adult molt. Both denervated and innervated muscles developed adult proportions of mitochondria, myofibril, and sarcoplasmic reticulum and transverse tubules.  相似文献   

10.
SRP-27 (sarcoplasmic reticulum protein of 27 kDa) is a newly identified integral membrane protein constituent of the skeletal muscle SR (sarcoplasmic reticulum). We identified its primary structure from cDNA clones isolated from a mouse skeletal muscle cDNA library. ESTs (expressed sequence tags) of SRP-27 were found mainly in cDNA libraries from excitable tissues of mouse. Western blot analysis confirmed the expression of SRP-27 in skeletal muscle and, to a lower extent, in heart and brain. Mild trypsin proteolysis combined with primary-structure prediction analysis suggested that SRP-27 has four transmembrane-spanning alpha helices and its C-terminal domain faces the cytoplasmic side of the endo(sarco)plasmic reticulum. The expression of SRP-27 is higher in fast twitch skeletal muscles compared to slow twitch muscles and peaks during the first month of post-natal development. High-resolution immunohistochemistry and Western blot analysis of subcellular fractions indicated that SRP-27 is distributed in both longitudinal tubules and terminal cisternae of the SR, as well as in the perinuclear membrane systems and the nuclear envelope of myotubes and adult fibres. SRP-27 co-sediments with the RyR (ryanodine receptor) macromolecular complex in high-salt sucrose-gradient centrifugation, and is pulled-down by anti-RyR as well as by maurocalcin, a well characterized RyR modulator. Our results indicate that SRP-27 is part of a SR supramolecular complex, suggesting the involvement of SRP-27 in the structural organization or function of the molecular machinery underlying excitation-contraction coupling.  相似文献   

11.
The compositions of sarcoplasmic reticulum (SR) membranes from rabbit caudofemoralis, tibialus, and soleus muscles (fast, mixed, and slow twitch, respectively) were analyzed. Compared to caudofemoralis (fast twitch) SR, soleus (slow twitch) SR contained a significantly greater percentage of cholesterol, phosphatidylinositol, and sphingomyelin and a lesser percentage of phosphatidylcholine. Correlations between properties reported for the SR isolated from different muscle types and our analyses of the compositions are discussed. We suggest that the greater cholesterol content and the greater sphingomyelin to phosphatidylcholine ratio present in soleus SR contribute to decreased bilayer fluidity and, hence, decreased Ca2+-ATPase activity.  相似文献   

12.
Fine structure of the alary muscles of the American cockroach   总被引:1,自引:0,他引:1  
The alary muscles of the cockroach, Periplaneta americana, are striated with an A-band of 3·0 to 3·5 μm long. Each muscle fibre was 10 to 12 μm in diameter and Z-lines appeared as small discrete units staggered throughout the sarcoplasm. Mitochondria were conspicuously located near the Z-line areas and were absent from the middle portion of the sarcomere. A transverse membrane system was present which formed dyad structures with a relatively sparse sarcoplasmic reticulum. Cockroach alary muscles were innervated by axons containing electron-dense granules of near 100 nm in diameter. These are thought to be typical of ‘neurosecretory’ axons based on their ultrastructural appearance.  相似文献   

13.
The Ca2+/calmodulin dependent protein kinase associated with the sarcoplasmic reticulum membranes (SR CaM kinase) plays a specific and important role in the modulation of both Ca2+ uptake and release functions of the sarcoplasmic reticulum itself. In this work we have localized a 60 kD SR CaM kinase in slow and fast twitch rabbit skeletal muscle fractions; the kinase was present in both the longitudinal and the junctional sarcoplasmic reticulum. We then developed a procedure for the purification of the active kinase from the longitudinal sarcoplasmic reticulum and performed biochemical and functional characterization of the enzyme. Differently from what was previously suggested, our analysis shows that the biochemical properties of the purified SR CaM kinase (Ca2+ sensitivity, K0.5 for calmodulin, Km for ATP, IC50 for the specific inhibitory peptide (290-309), autophosphorylation properties) are not significantly different from those of the soluble multifunctional CaM kinase II. Moreover, we show that the purified SR CaM kinase retains the ability to autophosphorylate in a Ca2+/calmodulin-dependent manner, becoming a Ca2+-independent enzyme. In the light of the knowledge of the rabbit SR CaM kinase biochemical properties, we propose and discuss the possibility that, under physiological conditions, the activity of the autophosphorylated kinase persists when the Ca2+ transient is over.  相似文献   

14.
Unloading of skeletal muscles by hindlimb unweighting is known to induce muscle atrophy and a shift toward faster contractile properties associated with an increase in the expression of fast contractile proteins, particularly in slow soleus muscles. Contractile properties suggest that slow soleus muscles acquire SR properties close to those of a faster one. We studied the expression and properties of the sarcoplasmic reticulum calcium release (RyR) channels in soleus and gastrocnemius muscles of rats submitted to hindlimb unloading (HU). An increase in RyR1 and a slight decrease in RyR3 expression was detected in atrophied soleus muscles only after 4 weeks of HU. No variation appeared in fast muscles. [(3)H]Ryanodine binding experiments showed that HU neither increased the affinity of the receptors for [(3)H]ryanodine nor changed the caffeine sensitivity of [(3)H]ryanodine binding. Our results suggested that not only RyR1 but also RyR3 expression can be regulated by muscle activity and innervation in soleus muscle. The changes in the RyR expression in slow fibers suggested a transformation of the SR from a slow to a fast phenotype.  相似文献   

15.
1. One week after denervation several biochemical characteristics of the fast extensor digitorum longus and slow soleus muscles from adult rats were investigated and compared with the characteristics of the corresponding unoperated contralateral muscles. 2. After these short periods of denervation-induced atrophy, the isolated myosins showed unchanged ATPase (adenosine triphosphatase) activities, but there was the expected difference between fast and slow muscle. 3. The specific activities of several soluble enzymes and their characteristic patterns were found to be only slightly modified in both the extensor and soleus muscles after denervation, as were most of the activities measured in the isolated mitochondria. 4. The most significant modifications were in the isolated sarcoplasmic reticulum, and appeared to be specific to either slow or fast muscle. 5. Denervation of slow muscle led to a marked increase of Ca(2+)-transport rates, and of the specific activity of the Mg(2+)-activated K(+)-modulated Ca(2+)-stimulated ATPase, together with changes in the polyacrylamide-electrophoretic profiles of the microsomal membrane protein. Transformation of these several properties of slow muscle sarcoplasmic reticulum to those of fast muscle sarcoplasmic reticulum was further substantiated by electron-microscopic analysis after negative staining. Control experiments with tenotomized soleus muscle gave negative results. 6. The isolated sarcoplasmic reticulum from fast muscle showed a slight diminution of ATPase-linked Ca(2+)-transport activity and a selective increase of rotenone-insensitive NADH-cytochrome c reductase activity, in addition to a greater emphasis on slow-type electrophoretic components of the structural membrane protein. 7. The significance of these results in relation to specific differentiating influences from motor nerves is discussed.  相似文献   

16.
The development and maturation of transverse (T) tubules and sarcoplasmic reticulum (SR) have been studied in pre- and postnatal mouse muscle, using selective "staining" of these membrane systems. As previously reported in the literature, orderly transverse orientation of the T tubules occurs late in development and early T-SR junctions (triads and dyads) are located at random along the T tubules in a predominantly longitudinal orientation. We find that initial appearance of transverse tubules occurs fairly abruptly, and that all early T tubules have a longitudinal orientation. Transverse orientation of the T tubule network, location of triads at the A-I junction, and development of differentiated regions of the SR are coordinated events which occur gradually over a period of about 3 weeks for leg muscle.s The timing of triad development coincides with that reported for the increase in slow calcium current and dihydropyridine binding. Differences in T tubule patterns between muscle fibers of EDL and soleus are apparent only at relatively late stages.  相似文献   

17.
The gross motor innervation of the abdominal longitudinal ventro-lateral muscles of the larva of Calliphora erythrocephala is described. Two of these muscles, 6A and 7A, are innervated by the same two multiterminally-ending axons, and thus comprise a single motor unit. No difference is found between the axon diameters in the main nerve trunks, but there is a difference where the axons run over the muscle surface. Only the dorsal, inner, surface of the muscle is innervated. Electro-physiological results show two sizes of EPSP: the large fast EPSP presumably corresponds to the thicker axon and the small slow one to the thinner axon. Preliminary work indicates that it is not possible to distinguish between the two axons with electron microscopy; the presynaptic regions possess both ‘classical’ synaptic and ‘neurosecretory’ type vesicles, and have no glial cell covering.  相似文献   

18.
Abstract. Previous studies have shown variable patterns of paternity after multiple mating, and also variation in sperm storage among individuals of Arianta arbustorum , which suggests that the spermatheca may influence paternity in this promiscuous land snail. To identify possible morphological correlates of sperm manipulation, we investigated arrangement and ultrastructure of the muscles of the spermatheca. The musculature surrounding the 2–9 spermathecal tubules is arranged in a complex three dimensional network. In addition, each tubule has a thin sheath in which longitudinally oriented cells make up the innermost layer. Usually, the smooth muscle cells are enclosed by connective tissue. Only occasionally is direct muscle-muscle contact established through dense plaques. The short thick filaments, their small diameter, the relatively weak development of the tubular system and sarcoplasmic reticulum, and the low density of mitochondria indicate that the muscle cells contract relatively fast but with little strength, that they recover slowly, and have low endurance. A single muscle cell may be innervated by several axons and one axon may contact several muscle cells. Combining evidence of the present paper and a foregoing investigation on the spermathecal epithelium, we suggest that the main function of the spermathecal muscles is to expel sperm stored for fertilization, while the ciliation of the common duct is probably responsible for the distribution of sperm among the tubules.  相似文献   

19.
The ultrastructural localization of the Ca2+ + Mg2+-dependent ATPase of sarcoplasmic reticulum in rat gracilis muscle was determined by indirect immunoferritin labeling of ultrathin frozen sections. Simultaneous visualization of ferritin particles and of adsorption- stained cellular membranes showed that the Ca2+ + Mg2+-ATPase was concentrated in the longitudinal sarcoplasmic reticulum and in the nonjunctional regions of the terminal cisternae membrane but was virtually absent from mitochondria, plasma membranes, transverse tubules, and junctional sarcoplasmic reticulum. Ferritin particles were found preponderantly on the cytoplasmic surface of the membrane, in agreement with published data showing an asymmetry of the Ca2+ + Mg2+- ATPase within the sarcoplasmic reticulum membrane. Comparison of the density of ferritin particles in fast and slow myofibers suggested that the density of the Ca2+ + Mg2+-ATPase in the sarcoplasmic reticulum membrane in a fast myofiber is approximately two times higher than in a slow myofiber.  相似文献   

20.
The speed of contraction of a skeletal muscle largely depends on the myosin heavy chain isoforms (MyHC), whereas the relaxation is initiated and maintained by the sarcoplasmic reticulum Ca2+-ATPases (SERCA). The expression of the slow muscle-type myosin heavy chain I (MyHCI) is entirely dependent on innervation, but, as we show here, innervation is not required for the expression of the slow-type sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) in regenerating soleus muscles of the rat, although it can play a modulator role. Remarkably, the SERCA2a level is even higher in denervated than in innervated regenerating soleus muscles on day 7 when innervation is expected to resume. Later, the level of SERCA2a protein declines in denervated regenerated muscles but it remains expressed, whereas the corresponding mRNA level is still increasing. SERCA1 (i.e., the fast muscle-type isoform) expression shows only minor changes in denervated regenerating soleus muscles compared with innervated regenerating controls. When the soleus nerve was transected instead of the sciatic nerve, SERCA2a and MyHCI expressions were found to be even more uncoupled because the MyHCI nearly completely disappeared, whereas the SERCA2a mRNA and protein levels decreased much less. The transfection of regenerating muscles with constitutively active mutants of the Ras oncogene, known to mimic the effect of innervation on the expression of MyHCI, did not affect SERCA2a expression. These results demonstrate that the regulation of SERCA2a expression is clearly distinct from that of the slow myosin in the regenerating soleus muscle and that SERCA2a expression is modulated by neuronal activity but is not entirely dependent on it. slow type sarcoplasmic reticulum Ca2+ pump; MyHCI; nerve influence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号