首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 881 毫秒
1.
The phospholipid headgroup and fatty acid compositions of a halotolerant Planococcus sp. (strain A4a) were examined when cells were grown in the presence of high concentrations of a variety of salts. The fatty acid composition of Planococcus sp. strain A4a was altered primarily as a function of the osmolality of the growth medium. The phospholipid headgroup composition was influenced by both the osmolality of the growth medium and the nature of the cation species present. An increase in the cardiolipin/phosphatidylglycerol molar ratio was detected when cells were grown in the presence of high concentrations of monovalent cations.  相似文献   

2.
The phospholipid headgroup and fatty acid compositions of a halotolerant Planococcus sp. (strain A4a) were examined when cells were grown in the presence of high concentrations of a variety of salts. The fatty acid composition of Planococcus sp. strain A4a was altered primarily as a function of the osmolality of the growth medium. The phospholipid headgroup composition was influenced by both the osmolality of the growth medium and the nature of the cation species present. An increase in the cardiolipin/phosphatidylglycerol molar ratio was detected when cells were grown in the presence of high concentrations of monovalent cations.  相似文献   

3.
Abstract The cellular fatty acid composition of the psychrophilic Vibrio sp. strain No. 5710 isolated from a deep-sea sediment sample was analyzed. The presence of docosahexaenoic acid (22:6) was demonstrated as found previously in other deep-sea bacteria, and the relative amount of 22:6 decreased as the growth temperature increased. A temperature shift from 10°C to 0°C resulted in a relative increase of 22:6, and an opposite shift led to a decrease. In addition, hexadecanoic acid (16:0) was found to increase as the growth temperature increased. Therefore, it is suggested that the adaptation of 5710 to the growth temperature was carried out by the changes in the relative amounts of 22:6 and 16:0. When 5710 was grown at low temperature, it increased the relative amount of 22:6 presumably to maintain membrane fluidity at that temperature. In contrast, 5710 grown at high temperature probably maintained the membrane fluidity by increasing the amount of a saturated fatty acid, 16:0. Furthermore, observation of the fatty acid compositions at mid-exponential phase and early stationary phase revealed the proportions of several fatty acids, including a major fatty acid, 9- cis -hexadecenoic acid (16:1c, palmitoleic acid), were affected by the growth phase which may be due to the physiological difference between the growth phases.  相似文献   

4.
Oceanomonas baumanniioff a novel halotolerant bacterium which was isolated from the estuary of the river Wear (Sunderland, UK). When grown in tryptone soya broth it can tolerate high levels of phenol, which is not utilised as a carbon source in this medium. However, the level of tolerance was reduced from 35 mM to 3 mM phenol as salinity increased from 1% to 12% NaCl (w/v). Increasing salinity up to 12% NaCl also decreased the growth rate 8-fold and caused modifications to the cytoplasmic membrane particularly anionic phosphatidylglycerol levels, which doubled at the expense of zwitterionic phosphatidylethanolamine. In addition, changes in the phospholipid fatty acid composition were noted, cis-vaccenic acid decreased significantly at higher salinities. Intracellular solute levels also increased with increasing salinity and there was an accumulation of the compatible solutes ectoine, glycine betaine and glutamate. The addition of phenol to osmotically compromised cultures led to a further modification of the cytoplasmic membrane phospholipid composition, in particular, that the decrease in zwitterionic phosphatidylethanolamine and the increase of anionic phospholipid species was much less pronounced. A further decrease in unsaturation, particularly in the proportion of cis-vaccenic acid, and the mean chain length of the fatty acids suggested that this response was important in maintaining membrane integrity in the presence of phenol.  相似文献   

5.
环境因子对乌桕内生真菌生长及脂肪酸的影响   总被引:7,自引:2,他引:7  
为探讨内生菌和植物的生态关系,以生物量和脂肪酸组分作为主要指标,研究了乌桕韧皮部分离获得的5种内生真菌(丝核菌、小菌核菌、小单头孢、毛壳菌、拟盘多毛孢)在不同环境因子下的生长.与合成培养基相比,在液体马铃薯培养基上发酵,生物量较高,脂肪酸不饱和指数较低;其脂肪酸主要为棕榈酸、油酸、亚油酸.与未添加乌桕汁的合成培养基相比,添加乌桕浸汁对小菌核菌生长有促进作用,对其余4种菌有抑制作用;脂肪酸不饱和指数均进一步增加.在合成培养基中添加NaCl培养小菌核菌,生物量均无显著差异;在0~0.5mol·L-1 NaCl时,脂肪酸不饱和指数无显著差异;在0.6~1.0mol·L-1 NaCl时随着盐浓度增加,脂肪酸不饱和指数却下降;表明该菌有较强的耐盐能力.添加植物油对小菌核菌菌丝生长有促进作用,其中在添加1.5%的植物油时,生物量最大;其脂肪酸随添加植物油而改变.以上特点均和二者的共生关系有关.  相似文献   

6.
The cellular fatty acid composition ofPlanococcus halophilus NRCC 14033 grown at different temperatures and salt concentrations was studied. Increase of the temperature or salt concentration in the growth medium resulted in an increase of saturated fatty acid content with a concomitant decrease of branched-chain acids. This result suggested, for this bacterium, phenotypic adaptation to changes in both temperature and salt concentration in the natural environment.  相似文献   

7.
The fatty acid composition of the total lipids, phospholipids and neutral lipids of log-phase shaker cultures of the bd (band) strain of Neurospora crassa, were measured every 2 h for an 8-h period following a temperature increase from 22 to 40 degrees C. For purposes of comparison, the fatty acid composition was also measured when cultures were grown from inoculation at temperatures between 22 and 40 degrees C. In the phospholipids, the temperature jump produced, over a 4-6 hour span, a linear decrease in the linolenic acid (18:3) content from 31 to 10 mol% and an increase in the linoleic acid (18:2) content from 41 to 45 mol% for a few hours, followed by a decrease to 38 mol%. The oleic acid (18:1) content increased, after a 2 h lag, from 5 to 26 mol%. The temperature increase caused a decrease in the double bond index from 180 to 135 but produced no changes in the mol% of the saturated fatty acids, the ratio of saturated to unsaturated fatty acids, the total amount of fatty acids per gram dry weight, or the growth rate of the cultures. After the switch to 40 degrees C the total amount of 18:3 per flask increased only slightly over the 8 h period, indicating that there was little loss of 18:3 from the mycelia by beta-oxidation, or by conversion to other fatty acids. Since the mass of the culture increased some 4-fold in this time, it suggests that the decrease in the mole percent of 18:3 is probably due to a decrease in the rate of synthesis of 18:3.  相似文献   

8.
The effect of butanol challenge (0, 1.0, 1.5% [vol/vol]) and growth temperature (22, 37, 42°C) on the membrane composition and fluidity of Clostridium acetobutylicum ATCC 824 and a butanol-tolerant mutant, SA-2, was examined in chemically defined medium. Growth of strain ATCC 824 into the stationary phase coincided with a gradual increase in the percent saturated to percent unsaturated (SU) fatty acid ratio. When challenged with butanol at 22 and 37°C, ATCC 824 demonstrated an immediate (within 30 min) dose-response increase in the SU ratio. This strain showed little additional change over a 48-h fermentation. Compared with ATCC 824, growth of SA-2 into the late stationary phase at 22 or 37°C resulted in an overall greater increase in the SU ratio for both unchallenged and challenged cells. This effect was minimized when SA-2 was challenged at 42°C, probably due to the combination of the membrane fluidizing effect of butanol and the elevated temperature. Growth at 42°C resulted in an increase in longer acyl chain fatty acids at the expense of shorter acyl chains for both strains. The membrane fluidity exhibited by SA-2 remained essentially constant at various butanol challenge and temperature combinations, while that for the ATCC 824 strain increased with increasing butanol challenge. By synthesizing an increased amount of saturated fatty acids, the butanol-tolerant SA-2 strain has apparently developed a mechanism for maintaining a more stable membrane environment. Growth of the microorganism is necessary for butanol to fluidize the membrane. Incorporation of exogenous fatty acids (18:1) did not significantly improve the butanol tolerance of either strain. Since SA-2 was able to produce only trace amounts of either butanol or acetone, increased tolerance to butanol does not necessarily coincide with greater solvent yields in this strain.  相似文献   

9.
The sulfonolipid sulfoquinovosyl diacylglycerol normally associated with photosynthetic membranes was identified as a major lipid in Marinococcus halophilus, Salinicoccus hispanicus ("Marinococcus hispanicus"), and Marinococcus sp. H8 (Planococcus sp. H8). Phosphatidylglycerol and 0%-10% cardiolipin accounted for the remaining polar lipids in these moderately halophilic, Gram-positive bacteria. Negative-ion fast atom bombardment mass spectrometry was used to quantify these three polar lipids from cells grown in media containing 0.03 to 4 mol NaCl/L. All strains revealed dramatic shifts in the ratio of sulfonolipid to phospholipid dependent on the salinity of the growth media, when grown in media with low phosphate content. Highest sulfonolipid content occurred during best growth in 0.5-2 mol NaCl/L, approaching 80%-90% of the total polar lipids. It was demonstrated that growth of M. halophilus in the presence of elevated phosphate and low sulfate blocked the shift to decreased phospholipids most notably during growth in 0.5-2 mol NaCl/L, without significant influence on growth. The data suggest that in low-phosphate media the influence of NaCl concentration on growth rate (and resulting demand for phosphate by competing pathways) is the primary factor responsible for exchange between phospholipid and sulfonolipid. We conclude that sulfoquinovosyl diacylglycerol, by substitution with phospholipids, contributes to the ability of these Gram-positive cocci to adapt to changing ionic environments. A comparison of 16S rRNA established a close similarity between Planococcus sp. H8 and M. halophilus.  相似文献   

10.
The C‐4 salt marsh grass, Spartina patens , thrives in the upper portion of the marsh where soil salinities may be equal to coastal seawater. Spartina patens was grown in hydroponic culture in a greenhouse at 0, 340, and 510 m M NaCl, and measured for growth, tissue cation content, and root plasma membrane (PM) lipid composition. From 0 to 340 and 510 m M , the shoot growth decreased, but root growth was not affected. The Na+ content increased in both shoots and roots when plants were grown in salt, while the shoots had a decreased K+ content and the roots had a decreased Ca2+ content. Spartina patens root plasma membrane was isolated with an aqueous polymer two‐phase system. The purity of the plasma membrane was verified with cytochemical tests on membrane enzyme markers. Plasma membrane lipids were stable relative to the membrane protein content. Molar percentages of sterols (including free sterols) and phospholipid decreased with increasing salinity. However, glycolipid showed a statistically significant increase in the total lipid as salinity in the medium was increased from 0 to 510 m M . Even at a salinity of 510 m M , the plasma membrane sterol/phospholipid ratio was unaffected by NaCl. When the plants were grown in NaCl media, the plasma membrane had a decreased phosphatidylcholine (PC) and phosphatidylethanolamine (PE) content, but the PC/PE ratios were not affected. The plasma membrane molar percentage of sitosterol in total free sterol increased when plants were grown in salt media. The predominant membrane fatty acids were C11 and C14, and the major unsaturated one was C14:1. An increase in growth medium salinity resulted in a decreased root plasma membrane fluidity.  相似文献   

11.
AIMS: Characterization of a bacterial isolate (strain MAE2) from intertidal beach sediment capable of degrading linear and branched alkanes. METHODS AND RESULTS: A Gram-positive, aerobic, heterotrophic bacterium (strain MAE2), that was capable of extensive degradation of alkanes in crude oil but had a limited capacity for the utilization of other organic compounds, was isolated from intertidal beach sediment. MAE2 had an obligate requirement for NaCl but could not tolerate high salt concentrations. It was capable of degrading branched and n-alkanes in crude oil from C11 to C33, but was unable to degrade aromatic hydrocarbons. Comparative 16S rRNA sequence analysis placed the isolate with members of the genus Planococcus. That finding was corroborated by chemotaxonomic and physiological data. The fatty acid composition of strain MAE2 was very similar to the type species of the genus Planococcus, P. citreus (NCIMB 1493T) and P. kocurii (NCIMB 629T), and was dominated by branched acids, mainly a15:0. However, the 16S rRNA of strain MAE2 had less than 97% sequence identity with the type strains of P. citreus (NCIMB 1439T), P. kocurii (NCIMB 629T) and two Planococcus spp. (strain MB6-16 and strain ICO24) isolated from Antarctic sea ice. This indicated that strain MAE2 represented a separate species from these planococci. Morphologically, the isolate resembled P. okeanokoites (NCIMB 561T) and P. mcmeekinii S23F2 (ATCC 700539T). The cellular fatty acid composition of P. okeanokoites and P. mcmeekinii was considerably different from strain MAE2, and the mol % G + C content of P. mcmeekinii was far lower than that of MAE2. CONCLUSION: On the basis of phenotypic and genotypic data, it is proposed that strain MAE2 is a new species of Planococcus, Planococcus alkanoclasticus sp. nov., for which the type strain is P. alkanoclasticus MAE2 (NCIMB 13489T). SIGNIFICANCE AND IMPACT OF THE STUDY: Planococcus species are abundant members of the bacterial community in a variety of marine environments, including some in sensitive Antarctic ecosystems. The occurrence of hydrocarbon-degrading Planococcus spp. is potentially of importance in controlling the impact of hydrocarbon contamination in sensitive marine environments.  相似文献   

12.
The effect of growth medium NaCl concentration on the fatty acid composition of phospholipids of 3 strains of Saccharomyces cerevisiae and 6 osmotolerant yeast strains was examined. The S. cerevisiae strains were characterized by a high content of palmitoleic (C16:1) acid and by having no polyunsaturated C18 acids, whereas the osmotolerant strains had a low content of C16:1 and a high proportion of polyenoic C18 acids. An increase of the NaCl concentration from 0% to 8% resulted in a decrease of the cellular phospholipid content on a dry-weight basis, for all strains but one of the osmotolerant strains. For the S. cerevisiae strains increased salinity produced a slight decrease of the proportion of C16 fatty acids with a concomitant increase of C18 acids, whereas the osmotolerant strains showed an increase of the relative content of oleic acid (C18:1) at the expense of the proportion of polyenoic C18 acids.  相似文献   

13.
A facultative psychrophilic bacterium, strain L-2, that grows at 0 and 5°C as minimum growth temperatures in complex and defined media, respectively, was isolated. On the basis of taxonomic studies, strain L-2 was identified as Cobetia marina. The adaptability of strain L-2 to cold temperature was higher than that of the type strain and of other reported strains of the same species. When the bacterium was grown at 5–15°C in a defined medium, it produced a high amount of trans-unsaturated fatty acids. By contrast, in a complex medium in the same temperature range it produced a low amount of trans-unsaturated fatty acids. In the complex medium at 5°C, the bacterium exhibited a three-fold higher growth rate than that obtained in the defined medium. Following a temperature shift from 11 to 5°C, strain L-2 grew better in complex than in defined medium. Furthermore, when the growth temperature was shifted from 0 to 5°C both the growth rate and the yield of strain L-2 growing in complex medium was markedly enhanced. These phenomena suggest that an upshift of the growth temperature had a positive effect on metabolism. The effects of adding complex medium components to the defined medium on bacterial growth rate and fatty acid composition at 5°C were also studied. The addition of yeast extract followed by peptone was effective in promoting rapid growth, while glutamate addition was less effective, resulting in a cis-unsaturated fatty acid ratio similar to that of cells grown in the complex medium. These results suggest that the rapid growth of strain L-2 at low temperatures requires a high content of various amino acids rather than the presence of a high ratio of cis-unsaturated fatty acids in the cell membrane.  相似文献   

14.
Abstract Growth of wild-type Escherichia coli strain MRE600 was severely affected up to 9 h following treatment with the anthracycline doxorubicin (15 μM), however, after 9 h, the cells became resistant. The onset of resistance coincided with some changes in the relative proportions of total saturated, monounsaturated and cyclopropane fatty acids. The anionic lipid content in E. coli strain HDL11 is under lac control and synthesis can be induced by incubation with the lac inducer IPTG. HDL11, with low levels of anionic phospholipid, was unaffected by doxorubicin (100 μM) over 9 h, with only slight inhibition of growth seen over 24 h. When the anionic lipid content of HDL11 was increased, there was a slight increase in the efficacy of doxorubicin, providing evidence for a membrane-based step in doxorubicin action.  相似文献   

15.
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid), an unusual branched chain fatty acid thought to disrupt the hydrophobic regions of membranes, can be incorporated into the lipids of growing Neurospora cultures. The phytanic acid must be supplied in a water soluble form, esterified to a Tween detergent (Tween-Phytanic). This fatty acid and its oxidation product, pristanic acid, were found in both the phospholipid and neutral lipid fractions of Neurospora. In phospholipids of the wild-type strain, phytanic acid was present to the extent of 4 to 5 moles percent of the fatty acids and pristanic acid, about 41 moles percent. The neutral lipids contained 42 and 4 moles percent of phytanic and pristanic acids respectively. By employing a fatty acid-requiring mutant strain (cel?), the phytanic acid level was raised to a maximum of 16 moles percent in the phospholipids and to 63 moles percent in the neutral lipids. Under this condition, the level of pristanic acid was reduced to about 6 moles percent in phospholipids and 1 mole percent in the neutral lipids. The phytanic acid levels could not be further elevated by increased supplementation with phytanic acid or by a change in the growth temperature. In strains with a high phytanic acid content, the complete fatty acid distribution of the phospholipids and neutral lipids was determined. In the neutral lipids, phytanic acid appeared to replace the 18 carbon fatty acids, particularly linoleic acid. The presence of phytanic acid in the phospholipids was confirmed by mass spectrometry, and by the isolation of a phospholipid fraction containing this fatty acid via silicic acid column chromatography. Most of the phytanic acid in phospholipids appeared to be in phosphatidylethanolamine, and 2 lines of evidence suggest that it was esterified to both positions of this molecule. In the fatty acid-requiring mutant strain (cel?), the replacement by phytanic acid of 10 to 15% of the fatty acids in the phospholipid produced an aberrant morphological change in the growth pattern of Neurospora and caused this organism to be osmotically more fragile than the wild-type strain. The lack of noticeable effect of the high levels of pristanic acid in the phospholipids suggests that it is not just the presence of the methyl groups in a branched chain fatty acid which leads to the altered membrane function in this organism.  相似文献   

16.
The olfactory (non-myelinated) and trigeminal (myelinated) nerve axons of garfish show changes in phospholipid fatty acid composition when these fish are acclimated to temperatures ranging from 11 to 35 degrees C. Myelinated and non-myelinated nerve axons show similar changes in the percent saturated, percent 16-carbon, percent 18-carbon, and percent 20-carbon-and-greater unsaturated fatty acids. The observed changes in phospholipid fatty acid composition fit a linear regression model suggesting a gradual change in axonal phospholipid fatty acid composition with temperature. The temperature-induced changes in garfish nerve phospholipid fatty acid composition are consistent with the general observation of increased saturated fatty acid residues in plasma membrane phospholipids of organisms acclimated to higher environmental temperatures. The garfish data are similar to data previously obtained for goldfish tissues and Tetrahymena.  相似文献   

17.
The objective of this study was to investigate the effect of salinity on growth, fatty acid composition, phenol content and antioxidant activity of Nigella sativa organs. Plants were grown hydroponically under NaCl stress (0, 20 40 and 60 mM). The results indicated that salinity affected N. sativa growth. The fatty acid composition of the leaves and the roots was investigated for the first time and major fatty acids were linolenic acid (58.1%) in the leaves and linoleic (43.9%) and palmitic (33.3%) acids and in the roots. Total fatty acid (TFA) content of the leaves decreased at 60 mM NaCl while root TFA increased at 20 and 40 mM NaCl. Moreover, the fatty acid composition was affected by NaCl; in leaves, the double bond index (DBI) decreased accompanied by a decrease of the level of linolenic acid which reached 14% at 60 mM NaCl. However, root DBI degree increased at 40 at 60 mM NaCl provoked mainly by the increase of the amount of linoleic acid by 15 and 8%, respectively, and the decrease of the amount of palmitic acid by 20 and 14%, respectively. Salt stress increased total polyphenol and individual phenolic acid contents in shoots. Moreover, the antiradical activity of the shoots (DPPH) increased at 60 mM NaCl. However, in roots, the total polyphenol content and the antiradical activity decreased sharply with increasing NaCl doses. Data reported here revealed the variation of fatty acids and phenolic compound contents in different organs of N. sativa, and the possible role of theses changes in the plant salt response were discussed.  相似文献   

18.
The cel mutant of Neurospora, partially blocked in fatty acid synthesis and lacking temperature compensation of its circadian rhythm below 22 degrees C, had a phospholipid fatty acid composition in liquid shaker culture distinctly different from that of a cel+ control strain. During growth, cel+ exhibited a reproducible increase in its linoleic acid level from about 32 to a plateau at 63 mol%, and a corresponding decrease in its linolenic acid level from about 40 to a plateau at 10 mol%. The level of palmitic acid was constant at 19 mol%. In the cel strain, the linoleic acid level was constant at 54 mol% while the palmitic acid level increased from about 12 to about 23 mol%. Supplementation with palmitic or linoleic acids altered the patterns of fatty acid composition of cel, but did not affect the pattern of cel+. Altered fatty acid composition cosegregated with the cel marker. The mitochondrial phospholipids of cel in liquid culture also had abnormal fatty acid composition, as did the whole mycelial phospholipids on solid medium. These results are consistent with the involvement of membrane homeostasis in the temperature compensation of circadian rhythms.  相似文献   

19.
Composition of fatty acids in Boekelovia hooglandii Nicolai et Baas Becking (Chrysophyceae) was investigated as a function of salinity. It was confirmed by gas chromatography that the composition of fatty acids in cells cultured in a 50 mmol L?1 NaCl medium consisted of C14:0, C15:0, C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, C18:4, C20:0, C20:4, C20:5, C22:5 and C22:6, in which C14:0, C16:0, C16:1, C18:4, C20:0, C20:5, C22:5 and C22:6 were main constituents. When the cells were cultured in a medium with different concentrations of NaCl ranging from 50 to 800 mmol L?1, the mole percentage of fatty acids such as C14:0, C16:0 and C16:1 decreased with increases in the salinity, while the mole percentage of highly polyunsaturated fatty acids such as C18:4, C20:5, C22:5 and C22:6 increased. When the cells were transferred from a 200 mmol L?1 NaCl medium to a 600 mmol L?1 NaCl medium, a decrease in mole percentage of C14:0, C16:0 and C16:1, and an increase in C18:4, C20:5, C22:5 and C22:6 were observed within 4 h. However, no change in the compositions of fatty acids was observed within 4 h when the cells were transferred from a 600 mmol L?1 NaCl medium to a 200 mmol L?1 NaCl one. The increase in the content of highly polyunsaturated fatty acids was considered to reflect the rapid response to upshock and to be the characteristic of salt tolerance in B. hooglandii.  相似文献   

20.
The effects of drought stress and/or low temperature stress on total lipid and phospholipid content and fatty acid composition of leaves of cucumber ( Cucumis sativus L.) genotypes differing in growth response at suboptimal temperature were studied. Both drought and low temperature resulted in reduced growth, especially in cv. Farbio, the genotype least tolerant to low temperature. Drought resulted in an increase in total lipid and phospholipid per g fresh weight. On a lipid basis no change in phospholipids or fatty acid content was observed. The fatty acid composition was changed by drought and low temperature, resulting in an increase in the degree of unsaturation. The genotype-specific reaction to treatment for total lipid content and the degree of unsaturation point to the possibility of a genetic origin for drought-induced lipid changes, which may be used in a breeding program for improved growth at suboptimal temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号