首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Cytosolic Ca2+ concentration levels fluctuate in an ordered manner along the cell cycle, in line with the fact that Ca2+ is involved in the regulation of cell proliferation. Cell proliferation should be an error-free process, yet is endangered by mistakes. In fact, a complex network of proteins ensures that cell cycle does not progress until the previous phase has been successfully completed. Occasionally, errors occur during the cell cycle leading to cell cycle arrest. If the error is severe, and the cell cycle checkpoints work perfectly, this results into cellular demise by activation of apoptotic or non-apoptotic cell death programs. Cancer is characterized by deregulated proliferation and resistance against cell death. Ca2+ is a central key to these phenomena as it modulates signaling pathways that control oncogenesis and cancer progression. Here, we discuss how Ca2+ participates in the exogenous and endogenous signals controlling cell proliferation, as well as in the mechanisms by which cells die if irreparable cell cycle damage occurs. Moreover, we summarize how Ca2+ homeostasis remodeling observed in cancer cells contributes to deregulated cell proliferation and resistance to cell death. Finally, we discuss the possibility to target specific components of Ca2+ signal pathways to obtain cytostatic or cytotoxic effects.  相似文献   

4.
The Inhibitor of apoptosis (IAP) antagonists Reaper (Rpr), Grim and Hid are central regulators of developmental apoptosis in Drosophila. Ectopic expression of each is sufficient to trigger apoptosis, and hid and rpr have been shown to be important for programmed cell death (PCD). To investigate the role for grim in PCD, a grim null mutant was generated. grim was not a key proapoptotic gene for embryonic PCD, confirming that grim cooperates with rpr and hid in embryogenesis. In contrast, PCD of glial cells in the microchaete lineage required grim, identifying a death process dependent upon endogenous grim. Grim associates with mitochondria and has been shown to activate a mitochondrial death pathway distinct from IAP antagonization; therefore, the Drosophila bcl-2 genes buffy and debcl were investigated for genetic interaction with grim. Loss of buffy led to microchaete glial cell survival and suppressed death in the eye induced by ectopic Grim. This is the first example of a developmental PCD process influenced by buffy, and places buffy in a proapoptotic role. PCD of microchaete glial cells represents an exceptional opportunity to study the mitochondrial proapoptotic process induced by Grim.  相似文献   

5.
Calcium signalling in glial cells   总被引:10,自引:0,他引:10  
Calcium signals are the universal way of glial responses to the various types of stimulation. Glial cells express numerous receptors and ion channels linked to the generation of complex cytoplasmic calcium responses. The glial calcium signals are able to propagate within glial cells and to create a spreading intercellular Ca2+ wave which allow information exchange within the glial networks. These propagating Ca2+ waves are primarily mediated by intracellular excitable media formed by intracellular calcium storage organelles. The glial calcium signals could be evoked by neuronal activity and vice versa they may initiate electrical and Ca2+ responses in adjacent neurones. Thus glial calcium signals could integrate glial and neuronal compartments being therefore involved in the information processing in the brain.  相似文献   

6.
Various electrical, mechanical, and chemical stimuli, including the influences of neurotrasmitters, neuromodulators, and hormones, trigger complex changes in [Ca2+] i in all types of glial cells. Glial [Ca2+] i responses are controlled by coordinated activity of several molecular cascades. The initiation of [Ca2+] i signal in glial cells results from activation of either plasmalemmal, or intracellular Ca2+ permeable channels. The interplay of different molecular cascades enables the development of agonist-specific patterns of Ca2+ responses. Such agonist specificity may provide the means for intracellular and intercellular information coding. Furthermore, glial [Ca2+] i signals can travel with no decrement within glial networks. These intercellular Ca2+ waves can be regarded as a substrate for information exchange between the glial cells. Neuronal activity can trigger [Ca2+] i signals in neighboring glial cells and, moreover, there is some evidence that glial [Ca2+] i waves can activate neuronal electrical and/or [Ca2+] i , responses. Glial Ca2+ signalling can be regarded as a form of glial excitability.  相似文献   

7.
Calcium dependence of bleb formation and cell death in hepatocytes   总被引:5,自引:0,他引:5  
Calcium dependence of bleb formation and cell death was evaluated in rat hepatocytes following ATP depletion by metabolic inhibition with KCN and iodoacetate ('chemical hypoxia'). Cytosolic free Ca2+ was measured in single cells by ratio imaging of Fura-2 fluorescence using multiparameter digitized video microscopy. Cells formed surface blebs within 10 to 20 minutes after chemical hypoxia and most cells lost viability within an hour. An increase of cytosolic free Ca2+ was not required for bleb formation to occur. One to a few minutes prior to the onset of cell death, free Ca2+ increased rapidly in high Ca2+ buffer (1.2 mM) but not in low Ca2+ buffer (less than 1 microM). In either buffer, the rate of cell killing was the same. As the onset of cell death was approached in both high and low Ca2+ buffers, Fura-2 began to leak from the cells at an accelerating rate indicating rapidly increasing plasma membrane permeability. In high Ca2+ buffer, cytosolic free Ca2+ increased in parallel with dye leakage. No regional changes in cytosolic free Ca2+ were observed during this metastable period of increased membrane permeability. In many experiments, actual rupture of cell surface blebs could be observed which led to micron-size discontinuities of the cell surface and cell death. We conclude that a metastable period characterized by increasing plasma membrane permeability marked the onset of cell death in cultured hepatocytes which culminated in rupture of a cell surface bleb. An increase of cytosolic free Ca2+ was not required for the metastable state to develop or cell death to occur.  相似文献   

8.
Abnormalities of calcium homeostasis are involved in the process of cell injuries such as Duchenne muscular dystrophy characterized by the absence of the protein dystrophin. But how the absence of dystrophin leads to cytosolic calcium overload is as yet poorly understood. This question has been addressed with skeletal muscle cells from human DMD muscles or mdx mice. Although easier to obtain than human muscles, mdx muscle cells have provided controversial data concerning the resting intracellular calcium level ([Ca2+](i)). This work describes the culture of Sol8 cell line that expresses neither dystrophin nor adhalin, a dystrophin-associated protein. The [Ca2+](i)and intracellular calcium transients induced by different stimuli (acetylcholine, caffeine and high potassium) are normal during the first days of culture. At later stages, calcium homeostasis exhibits drastic alterations with a breaking down of the calcium responses and a large [Ca2+](i)elevation. Concomitantly, Sol8 cells exhibit morphological signs of cell death like cytoplasmic shrinkage and incorporation of propidium iodide. Cell death could be significantly reduced by blocking the activity of calpains, a type of calcium-regulated proteases. These results suggest that Sol8 cell line provides an alternative model of dystrophin-deficient skeletal muscle cells for which a clear disturbance of the calcium homeostasis is observed in culture in association with calpain-dependent cell death. It is shown that transfection with a plasmid cDNA permits the forced expression of dystrophin in Sol8 myotubes as well as a correct sorting of the protein. This approach could be used to explore possible interactions between dystrophin deficiency, calcium homeostasis alteration, and dystrophic cell death.  相似文献   

9.
10.
We address the specific role of cytoplasmic Ca(2+) overload as a cell death trigger by expressing a receptor-operated specific Ca(2+) channel, vanilloid receptor subtype 1 (VR1), in Jurkat cells. Ca(2+) uptake through the VR1 channel, but not capacitative Ca(2+) influx stimulated by the muscarinic type 1 receptor, induced sustained intracellular [Ca(2+)] rises, exposure of phosphatidylserine, and cell death. Ca(2+) influx was necessary and sufficient to induce mitochondrial damage, as assessed by opening of the permeability transition pore and collapse of the mitochondrial membrane potential. Ca(2+)-induced cell death was inhibited by ruthenium red, protonophore carbonyl cyanide m-chlorophenylhydrazone, or cyclosporin A treatment, as well as by Bcl-2 expression, indicating that this process requires mitochondrial calcium uptake and permeability transition pore opening. Cell death occurred without caspase activation, oligonucleosomal/50-kilobase pair DNA cleavage, or release of cytochrome c or apoptosis inducer factor from mitochondria, but it required oxidative/nitrative stress. Thus, Ca(2+) influx triggers a distinct program of mitochondrial dysfunction leading to paraptotic cell death, which does not fulfill the criteria for either apoptosis or necrosis.  相似文献   

11.
Calcium is a key signaling molecule in beta-lapachone-mediated cell death   总被引:5,自引:0,他引:5  
beta-Lapachone (beta-Lap) triggers apoptosis in a number of human breast and prostate cancer cell lines through a unique apoptotic pathway that is dependent upon NQO1, a two-electron reductase. Downstream signaling pathway(s) that initiate apoptosis following treatment with beta-Lap have not been elucidated. Since calpain activation was suspected in beta-Lap-mediated apoptosis, we examined alterations in Ca(2+) homeostasis using NQO1-expressing MCF-7 cells. beta-Lap-exposed MCF-7 cells exhibited an early increase in intracellular cytosolic Ca(2+), from endoplasmic reticulum Ca(2+) stores, comparable to thapsigargin exposures. 1,2-Bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester, an intracellular Ca(2+) chelator, blocked early increases in Ca(2+) levels and inhibited beta-Lap-mediated mitochondrial membrane depolarization, intracellular ATP depletion, specific and unique substrate proteolysis, and apoptosis. The extracellular Ca(2+) chelator, EGTA, inhibited later apoptotic end points (observed >8 h, e.g. substrate proteolysis and DNA fragmentation), suggesting that later execution events were triggered by Ca(2+) influxes from the extracellular milieu. Collectively, these data suggest a critical, but not sole, role for Ca(2+) in the NQO1-dependent cell death pathway initiated by beta-Lap. Use of beta-Lap to trigger an apparently novel, calpain-like-mediated apoptotic cell death could be useful for breast and prostate cancer therapy.  相似文献   

12.
The blood–brain barrier (BBB) selectively controls the homeostasis of the central nervous system (CNS) environment using specific structural and biochemical features of the endothelial cells, pericytes, and glial limitans. Glial cells, which represent the cellular components of the mature BBB, are the most numerous cells in the brain and are indispensable for neuronal functioning. We investigated the effects of Shiga toxin on glial cells in vitro. Shiga toxin failed to inhibit cell proliferation but attenuated expression of heat shock protein 70, which is one of the chaperone proteins, in cultured and primary glial cells. Furthermore, the combination of Shiga toxin and a heat shock procedure induced cell apoptosis and decreased cell proliferation in both cells. Thus, we speculate that glial cell death in response to the combination of Shiga toxin and heat shock might weaken the BBB and induce central nervous system complications.  相似文献   

13.
Apoptosis repressor with CARD (ARC) possesses the ability not only to block activation of caspase 8 but to modulate caspase-independent mitochondrial events associated with cell death. However, it is not known how ARC modulates both caspase-dependent and caspase-independent cell death. Here, we report that ARC is a Ca(2+)-dependent regulator of caspase 8 and cell death. We found that in Ca(2+) overlay and Stains-all assays, ARC protein bound to Ca(2+) through the C-terminal proline/glutamate-rich (P/E-rich) domain. ARC expression reduced not only cytosolic Ca(2+) transients but also cytotoxic effects of thapsigargin, A23187, and ionomycin, for which the Ca(2+)-binding domain of ARC was indispensable. Conversely, direct interference of endogenous ARC synthesis by targeting ARC enhanced such Ca(2+)-mediated cell death. In addition, binding and immunoprecipitation analyses revealed that the protein-protein interaction between ARC and caspase 8 was decreased by the increase of Ca(2+) concentration in vitro and by the treatment of HEK293 cells with thapsigargin in vivo. Caspase 8 activation was also required for the thapsigargin-induced cell death and suppressed by the ectopic expression of ARC. These results suggest that calcium binding mediates regulation of caspase 8 and cell death by ARC.  相似文献   

14.
A mathematical model of calcium dynamics in a Bergmann cell of the cerebellum is proposed. The model adequately describes the experimentally observed behavior of the prototype, including the shape and time-scale of Ca2+ responses to single and repetitive metabotropic stimuli and the changes of Ca2+ transients caused by inhibition of Ca2+ uptake into the store. By means of the model, the role of calcium pumps in regulating the cytoplasmic Ca2+ concentration is studied. It is found that the store dimension evaluated by stimulation has the order of magnitude of tens of nanometers, and the Ca2+ concentration in the store is about 10 μM.  相似文献   

15.
Recent studies indicate that Toll-like receptors (TLRs), originally identified as infectious agent receptors, also mediate sterile inflammatory responses during tissue damage. In this study, we investigated the role of TLR2 in excitotoxic hippocampal cell death using TLR2 knock-out (KO) mice. TLR2 expression was up-regulated in microglia in the ipsilateral hippocampus of kainic acid (KA)-injected mice. KA-mediated hippocampal cell death was significantly reduced in TLR2 KO mice compared with wild-type (WT) mice. Similarly, KA-induced glial activation and proinflammatory gene expression in the hippocampus were compromised in TLR2 KO mice. In addition, neurons in organotypic hippocampal slice cultures (OHSCs) from TLR2 KO mouse brains were less susceptible to KA excitotoxicity than WT OHSCs. This protection is partly attributed to decreased expression of proinflammatory genes, such as TNF-α and IL-1β in TLR2 KO mice OHSCs. These data demonstrate conclusively that TLR2 signaling in microglia contributes to KA-mediated innate immune responses and hippocampal excitotoxicity.  相似文献   

16.
Sustained, mild K+ depolarization caused bovine chromaffin cell death through a Ca(2+)-dependent mechanism. During depolarization, Ca(2+) entered preferentially through L-channels to induce necrotic or apoptotic cell death, depending on the duration of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) signal, as proven by the following. (i) The L-type Ca(2+) channel activators Bay K 8644 and FPL64176, more than doubled the cytotoxic effects of 30 mm K+; (ii) the L-type Ca(2+) channel blocker nimodipine suppressed the cytotoxic effects of K+ alone or K+ plus FPL64176; (iii) the potentiation by FPL64176 of the K+ -evoked [Ca(2+)](c) elevation was totally suppressed by nimodipine. Cell exposure to K+ plus the L-type calcium channel agonist FPL64176 caused an initial peak rise followed by a sustained elevation of the [Ca(2+)](c) that, in turn, increased [Ca(2+)](m) and caused mitochondrial membrane depolarization. Cyclosporin A, a blocker of the mitochondrial transition pore, and superoxide dismutase prevented the apoptotic cell death induced by Ca(2+) overload through L-channels. These results suggest that Ca(2+) entry through L-channels causes both calcium overload and mitochondrial disruption that will lead to the release of mediators responsible for the activation of the apoptotic cascade and cell death. This predominant role of L-type Ca(2+) channels is not shared by other subtypes of high threshold voltage-dependent neuronal Ca(2+) channels (i.e. N, P/Q) expressed by bovine chromaffin cells.  相似文献   

17.
18.
Neuronal and glial cell biology   总被引:2,自引:0,他引:2  
  相似文献   

19.
Neuronal and glial cell biology   总被引:9,自引:0,他引:9  
Here, we review progress in our understanding of neuronal and glial cell biology during the past ten years, with an emphasis on glial cell fate specification, apoptosis, the cytoskeleton, neuronal polarity, synaptic vesicle recycling and targeting, regulation of the cytoskeleton by extracellular signals, and neuron-glia interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号