首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A complex trisaccharide β-d-GalpNAcA-(1 → 4)-β-d-GlcpNAc-(1 → 4)-d-ManpNAc (3) was prepared in a good yield (35%) in a transglycosylation reaction catalyzed by β-N-acetylhexosaminidase from Talaromyces flavus using p-nitrophenyl 2-acetamido-2-deoxy-β-d-galacto-hexodialdo-1,5-pyranoside (1) as a donor followed by the in situ oxidation of the aldehyde functionality by NaClO2. The disaccharide β-d-GlcpNAc-(1 → 4)-d-ManpNAc (2) was used as galactosyl acceptor. A disaccharide β-d-GalpNAcA-(1 → 4)-d-GlcpNAc (4; 39%) originated as a by-product in the reaction. Oligosaccharides comprising a carboxy moiety at C-6 are shown to be very efficient ligands to natural killer cell activation receptors, particularly to human receptor CD69. Thus, oxidized trisaccharide 3 is the best-known oligosaccharidic ligand to this receptor, with IC50 = 2.5 × 10−9 M. The presented method of introducing a β-d-GalpNAcA moiety into carbohydrate structures is versatile and can be applied in the synthesis of other complex oligosaccharides.  相似文献   

2.
The purpose of this report is to explore the growth inhibitory effect of extracts and compounds from black cohosh and related Cimicifuga species on human breast cancer cells and to determine the nature of the active components. Black cohosh fractions enriched for triterpene glycosides and purified components from black cohosh and related Asian species were tested for growth inhibition of the ER Her2 overexpressing human breast cancer cell line MDA-MB-453. Growth inhibitory activity was assayed using the Coulter Counter, MTT and colony formation assays.Results suggested that the growth inhibitory activity of black cohosh extracts appears to be related to their triterpene glycoside composition. The most potent Cimicifuga component tested was 25-acetyl-7,8-didehydrocimigenol 3-O-β-d-xylopyranoside, which has an acetyl group at position C-25. It had an IC50 of 3.2 μg/ml (5 μM) compared to 7.2 μg/ml (12.1 μM) for the parent compound 7,8-didehydrocimigenol 3-O-β-d-xylopyranoside. Thus, the acetyl group at position C-25 enhances growth inhibitory activity.The purified triterpene glycoside actein (β-d-xylopyranoside), with an IC50 equal to 5.7 μg/ml (8.4 μM), exhibited activity comparable to cimigenol 3-O-β-d-xyloside. MCF7 (ER+Her2 low) cells transfected for Her2 are more sensitive than the parental MCF7 cells to the growth inhibitory effects of actein from black cohosh, indicating that Her2 plays a role in the action of actein. The effect of actein on Her2 overexpressing MDA-MB-453 and MCF7 (ER+Her2 low) human breast cancer cells was examined by fluorescent microscopy. Treatment with actein altered the distribution of actin filaments and induced apoptosis in these cells.These findings, coupled with our previous evidence that treatment with the triterpene glycoside actein induced a stress response and apoptosis in human breast cancer cells, suggest that compounds from Cimicifuga species may be useful in the prevention and treatment of human breast cancer.  相似文献   

3.
Five glycosides, 2-(trans-cinnamoyloxy-methyl)-1-butene-4-O-β-d-glucopyranoside (1), 4-(6′-O-trans-cinnamoyl)-(2-hydroxymethyl-4-hydroxy-butenyl-β-d-glucopyranoside (2), 6′′-O-trans-p-coumaroyl-(4-hydroxybenzoyl)-β-d-glucopyranoside (3), 6′-O-(4-methoxy-trans-cinnamoyl) α/β-d-glucopyranose (4) 6′-O-(4′′-methoxy-trans-cinnamoyl)-kaempferol-3-β-d-glucopyranoside (7) along with six known compounds, (+)-isolariciresinol 3a-O-β-d-glucopyranoside (8) (+)-lyoniresinol 3a-O-β-d-glucopyranoside (9), apigenin 7-O-β-d-glucopyranoside (10), quercetin 3-O-β-d-glucopyranoside (11), 6′-O-cinnamoyl-α/β-d-glucopyranose (6) 6’-O-p-coumaroyl-α/β-d-glucopyranose (5) were isolated from the whole plant of Spiraea canescens. Some of these compounds showed potent radical scavenging activity in relevant non-physiological assays. Their structures were determined by NMR spectroscopic and CID mass spectrometric techniques.  相似文献   

4.
A platform for screening drugs for their ability to protect neuronal cells against cytotoxicity was developed. Nerve growth factor (NGF) differentiates PC12 cells into nerves, and these differentiated PC12 cells enter apoptosis when challenged with 6-hydroxydopamine (6-OHDA). A screening spectrophotometer was used to assay cytotoxicity in these cells; pretreatment with test samples allowed identification of compounds that protected against this neuronal cytotoxicity. The 95% ethanol extract of Phoenix hanceana Naudin var. formosana Beccari. (PH) showed potential neuroprotective activity in these assays. The PH ethanol extract was further fractionated by sequential partitioning with n-hexane, ethyl acetate (EtOAc), n-butanol (n-BuOH), and water. Subsequent rounds of assaying resulted in the isolation of ten constituents, and their structures were characterized by various spectroscopic techniques and identified by comparison with previous data as: isoorientin (1), isovitexin (2), veronicastroside (3), luteolin-7-O-β-d-glucopyranoside (4), isoquercitrin (5), tricin-7-neohesperidoside (6), tricin-7-O-β-d-gluco-pyranoside (7), (+)-catechin (8), (−)-epicatechin (9), and orientin 7-O-β-d-glucopyranoside (10). Among these compounds, isovitexin (2), luteolin-7-O-β-d-glucopyranoside (4) and (+)-catechin (8) showed significant neuroprotective activity in cell viability (WST-8 reduction), anti-apoptosis (Annexin V-FITC/propidium iodide double-labeled flow cytometry), and cellular ROS scavenging assays (besides isovitexin (2)), as well as a decreased caspase-8 activity in 6-OHDA-induced PC12 cells. Hence, isovitexin (2), luteolin-7-O-β-d-glucopyranoside (4), and (+)-catechin (8) protected PC12 cells from 6-OHDA-induced apoptotic neurotoxicity.  相似文献   

5.
Three acylated flavonol diglucosides, kaempferol 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; quercetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; isorhamnetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside were isolated from the whole plant aqueous alcohol extract of Lotus polyphyllos. The known 3,7-di-O-glucosides of the aglycones kaempferol, quercetin and isorhamnetin were also characterized. All structures were established on the basis of chemical and spectral evidence.  相似文献   

6.
Phytochemical analysis of Solanum nigrum has resulted in the isolation of two novel disaccharides. Their structures were determined as ethyl β-d-thevetopyranosyl-(1→4)-β-d-oleandropyranoside (1) and ethyl β-d-thevetopyranosyl-(1→4)-α-d-oleandropyranoside (2), respectively, by chemical and spectroscopic methods.  相似文献   

7.
The transglycosylation potential of the extracellular α-d-galactosidase from the filamentous fungus Talaromyces flavus CCF 2686, chosen as the best enzyme from the screening, was investigated using a series of sterically hindered alcohols (primary, secondary and tertiary) as galactosyl acceptors. Nine alkyl α-d-galactopyranosides derived from the following alcohols – tert-butyl alcohol, 2-methyl-2-butyl alcohol, 2-methyl-1-propyl alcohol, 2,2,2-trifluoroethyl alcohol, 2-propyn-1-ol, n-pentyl alcohol, 3,5-dihydroxybenzyl alcohol, 1-phenylethyl alcohol and 1,4-dithio-dl-threitol – were prepared on a semi-preparative scale. This demonstrates a broad synthetic potential of the T. flavus α-d-galactosidase that has not been observed with another enzyme tested. Moreover, this enzyme exhibits good transglycosylation yields (6–34%). The enzymatic synthesis of tert-butyl α-d-galactopyranoside by transglycosylation was studied in detail.  相似文献   

8.
A novel polysaccharide designated EPS-1A with an average molecular weight around 40 kDa was fractionated and purified by anion-exchange and gel-filtration chromatography from the crude exopolysaccharide (EPS) isolated from fermentation broth of Cs-HK1, a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. The structural characteristics of EPS-1A were determined with various methods (e.g. GC, GC–MS, FT-IR, 1H NMR and 13C NMR) and through acid hydrolysis, methylation, periodate-oxidation and Smith degradation. The results suggested that EPS-1A was composed of glucose, mannose and galactose at 15.2:3.6:1.0 M ratio. EPS-1A was a slightly branched polysaccharide and its backbone was composed of (1 → 6)-α-d-glucose residues (77%) and (1 → 6)-α-d-mannose residues (23%). Branching occurred at O-3 position of (1 → 6)-α-d-mannose residues of the backbone with (1 → 6)-α-d-mannose residues and (1 → 6)-α-d-glucose residues, and terminated with β-d-galactose residues.  相似文献   

9.
A water-soluble polysaccharide isolated from Dalbergia sissoo Roxb. leaves was purified and major homogeneous fraction obtained by GPC. Complete hydrolysis of the polysaccharide followed by paper chromatography and GLC analysis indicated the presence of l-rhamnose, d-glucuronic acid, d-galactose and d-glucose in molar ratio of 1:1:2:2.33, respectively. Partial hydrolysis of the polysaccharide furnished one tri-[I], one hepta-[II] and one nona-[III] saccharides. Hydrolysis of the oligosaccharide I, II and III followed by GLC analysis furnished d-glucose and l-rhamnose (2:1); l-rhamnose, d-galactose and d-glucuronic acid (1:3:3); and l-rhamnose, d-galactose and d-glucose (1:3:5), respectively. Methylation analysis and periodate oxidation of the oligosaccharide I indicated the presence of two non reducing glucose units linked to rhamnose by 1→2 and 1→4 linkages, respectively. Oligosaccharide II is a branched molecule with a main chain consisting of 1,3-linked β-d-galactopyranosyl (2 mol), 1,3,4 linked α-l-rhamnopyranosyl (1 mol) and 1,4,6 linked β-d-galactopyranosyl unit (1 mol) and non reducing β-d-glucuronic acid at the end along with side chains of β-d-glucouronopyranosyl units (2 mol). Oligosaccharide III is also a branched molecule with a main chain consisting of 1,3,4 linked α-l-rhamnopyranosyl (1 mol), 1,2,4 linked β-d-glucopyranosyl (1 mol), 1,3 and 1,4 linked β-d-galactopyranosyl (2 and 1 mol, respectively) having β-d-glucopyranosyl as a non reducing end.  相似文献   

10.
Insect β-N-acetyl-d-hexosaminidases are of particular interest due to their multiple physiological roles in many life processes. Chitinolytic β-N-acetyl-d-hexosaminidases, which function only in chitin degradation in insects, have long been regarded as species-specific target potentials in developing environmental friendly pesticides. Here the chitinolytic β-N-acetyl-d-hexosaminidase from the insect Ostrinia furnacalis was cloned and expressed in the yeast strain, Pichia pastoris, to meet the demands of biochemical studies and drug development. Enzymatic assay as well as Western blot confirmed that the high-level expression could be achieved after the induction of methanol for 120 h. Through the sequential combination of ammonium sulfate precipitation, metal chelating chromatography as well as anion exchange chromatography, 7.7 mg of the recombinant OfHex1 with high purity was obtained from 1 liter of culture supernatant. The recombinant OfHex1, characterized as a homodimer with molecular weight of 130 kDa, exhibited the same enzymatic activities as its native form, which could efficiently degrade the chitooligosaccharide substrate (GlcNAc)2 and release 4-methylumbelliferone (4MU) from substrates, 4MU-β-GlcNAc and 4MU-β-GalNAc. This work provides a low-costing and high-efficient purification procedure for the preparation of insect β-N-acetyl-d-hexosaminidases.  相似文献   

11.
The crude polysaccharide was obtained from Gynostemma pentaphyllum Makino by water extraction followed by ethanol precipitation. The polysaccharide was successively purified by chromatography on DEAE-52 and SephadexG-150 column, and three polysaccharide fractions were obtained and termed GPP1-a, GPP2-b, and GPP3-a, respectively. The administration with GPP1-a markedly prolonged exhaustive exercise time of the mice. Structural features of GPP1-a were investigated by a combination of instrumental and chemical analyses, including atomic force microscope (AFM), scanning electron microscope (SEM), partial acid hydrolysis, periodate oxidation, Smith degradation, methylation analysis, gas chromatography–mass spectrometry (GC–MS) analysis and NMR spectroscopy. The results indicate that GPP1-a has a backbone of (1 → 4)-linked α-d-Glucose residues, which occasionally branches at O-6. The branches are mainly composed of (1 → 6)-linked α-d-Glucose, (1 → 3)-linked β-d-Galactose and (1 → 6)-linked α-d-Galactose residues, and terminated with β-d-Galactose residues and β-l-Arabinose residues.  相似文献   

12.
An intracellular β-xylosidase from the thermophilic fungus Sporotricum thermophile strain ATCC 34628 was purified to homogeneity by Q-Sepharose and Mono-Q column chromatographies. The protein properties correspond to molecular mass and pI values of 45 kDa and 4.2, respectively. The enzyme is optimally active at pH 7.0 and 50 °C. The purified β-xylosidase is fully stable at pH 6.0–8.0 and temperatures up to 50 °C and retained over 58% of its activity after 1 h at 60 °C. The enzyme hydrolyzes β-1,4-linked xylo-oligosaccharides with chain lengths from 2 to 6, releasing xylose from the non-reducing end, but is inactive against xylan substrates. The apparent Km and Vmax values from p-nitrophenyl β-d-xylopyranoside are 1.1 mM and 114 μmol p-nitrophenol min−1 mg−1, respectively. Alcohols inactivate the enzyme, ethanol at 10% (v/v) yields a 30% decrease of its activity. The enzyme is irreversibly inhibited by 2,3-epoxypropyl β-d-xylobioside while alkyl epoxides derived from d-xylose were not inhibitors of the enzyme. The enzyme catalyses the condensation reaction using high donor concentration, up to 60% (w/v) xylose.  相似文献   

13.
Each of the cell walls of four representatives of the genus Kribbella (order Actinomycetales; suborder Propionibacterineae; family Nocardioidaceae) contains a neutral polysaccharide and an acidic polysaccharide with unusual structures. Common to all four strains studied is a mannan with the following repeating unit: In the cell wall of the strain VKM Ac-2541, a teichulosonic acid was identified with a monosaccharide component that has not hitherto been found in Gram-positive bacteria, viz., pseudaminic acid, and an unusual linkage type in the polymeric chain,

where R = Н (45%), α-d-Galp3OMe (37%) or α-d-Galp2,3OMe (18%).The anionic cell wall components of three other strains are represented by teichuronic acids with a rare constituent, viz., a diaminosugar, 2,3-diacetamido-2,3-dideoxyglucopyranose. The structures of their repeating units differ in the nature of the acidic components:→4)-β-d-Manp2,3NAcA-(1→6)-α-d-Glcp2,3NAc-(1→ (VKM Ас-2538 and VKM Ас-2540) and →4)-β-d-ManpNAcA-(1→6)-α-d-Glcp2,3NAc-(1→ (VKM Ас-2539).The structures of all the glycopolymers were established by chemical and NMR spectroscopic methods; they are identified in Gram-positive bacteria for the first time.  相似文献   

14.
A novel enzyme, β-phenylalanine ester hydrolase, useful for chiral resolution of β-phenylalanine and for its β-peptide synthesis was characterized. The enzyme purified from the cell free-extract of Sphingobacterium sp. 238C5 well hydrolyzed β-phenylalanine esters (S)-stereospecifically. Besides β-phenylalanine esters, the enzyme catalyzed the hydrolysis of several α-amino acid esters with l-stereospecificity, while the deduced 369 amino acid sequence of the enzyme exhibited homology to alkaline d-stereospecific peptide hydrolases from Bacillus strains. Escherichia coli transformant expressing the β-phenylalanine ester hydrolase gene exhibited an about 8-fold increase in specific (S)-β-phenylalanine ethyl ester hydrolysis as compared with that of Sphingobacterium sp. 238C5. The E. coli transformant showed (S)-enantiomer specific esterase activity in the reaction with a low concentration (30 mM) of β-phenylalanine ethyl ester, while it showed both esterase and transpeptidase activity in the reaction with a high concentration (170 mM) of β-phenylalanine ethyl ester and produced β-phenylalanyl-β-phenylalanine ethyl ester. This transpeptidase activity was useful for β-phenylalanine β-peptide synthesis.  相似文献   

15.
From the fruits of Sambucus canadensis four anthocyanin glycosides have been isolated by successive application of an ion-exchange resin, droplet-counter chromatography and gel filtration. The structure of the novel, major (69.8%) pigment, cyanidin 3-O-[6-O-(E-p-coumaroyl-2-O-(β- -xylopyranosyl)-β- -glucopyranoside]-5-O-β- -glucopyranoside, was determined by means of chemical degradation, chromatography and spectroscopy, especially homo- and heteronuclear two-dimensional NMR techniques. The other anthocyanins were identified as cyanidin 3-sambubioside-5-glucoside (22.7%), cyanidin 3-sambubioside (2.3 %) and cyanidin 3-glucoside (2.1 %).  相似文献   

16.
Cultivated oyster mushrooms (genus Pleurotus) are interesting as a source of biologically active glucans. Partially, β-glucan from Pleurotus sp. (pleuran) has been used as food supplements due to its immunosuppressive activity. Like other dietary fibre components, oyster mushroom polysaccharides can stimulate the growth of colon microorganisms (probiotics), i.e. act as prebiotics. Specific glucans were isolated from stems of Pleurotus ostreatus and Pleurotus eryngii by subsequent boiling water and alkali extraction. Obtained water soluble (L1), alkali soluble (L2) and insoluble (S) fractions were characterised by various analytical methods. Spectroscopic analysis detected glucans in all the fractions: branched 1,3-1,6-β-d-glucan predominated in L1 and S, while linear 1,3-α-d-glucan in L2. Fractions L1 also contained marked amount of proteins partially in complex with glucans; protein content in L2 was insignificant. Effective deproteinisation of L1 and separation of α- and β-glucans in L2 was achieved by the treatment with phenolic reagent. Small amount of chitin was found in S as a component of cell wall chitin–glucan complex. Potential prebiotic activity of extracts L1 and L2 was testing using nine probiotic strains of Lactobacillus, Bifidobacterium and Enterococcus. These probiotics showed different growth characteristics dependently on used extract and strain specificity due to the presence of structurally diverse compounds. The extracts L1 and L2 can be applied to synbiotic construction only for carefully selected probiotic strains. This exploitation of fruit body extracts extends the use of mushrooms P. ostreatus and P. eryngii for human health.  相似文献   

17.
The retaining endo-1,3-β-d-glucanase (LV) with molecular mass of 36 kDa was purified to homogeneity from the crystalline styles of scallop Mizuhopecten yessoensis. The purified enzyme catalyzed hydrolysis of laminaran as endo-enzyme forming glucose, laminaribiose and higher oligosaccharides as products (Km  600 μg/mL). The 1,3-β-d-glucanase effectively catalyzed transglycosylation reaction that is typical of endo-enzymes too. Optima of pH and temperature were at 4.5 and 45 °C, respectively. cDNA encoding the endo-1,3-β-d-glucanase was cloned by PCR-based methods. It contained an open reading frame that encoded 339-amino acids protein. The predicted endo-1,3-β-d-glucanase amino acid sequence included a characteristic domain of the glycosyl hydrolases family 16 and revealed closest homology with 1,3-β-d-glucanases from bivalve Pseudocardium sachalinensis, sea urchin Strongylocentrotus purpuratus and invertebrates lipopolysaccharide and β-1,3-glucan-binding proteins.The fold of the LV was more closely related to κ-carrageenase, agarase and 1,3;1,4-β-d-glucanase from glycosyl hydrolases family 16. Homology model of the endo-1,3-β-d-glucanase from M. yessoensis was obtained with MOE on the base of the crystal structure of κ-carrageenase from P. carrageonovora as template. Putative three-dimensional structures of the LV complexes with substrate laminarihexaose or glucanase inhibitor halistanol sulfate showed that the binding sites of the halistanol sulfate and laminarihexaose are located in the enzyme catalytic site and overlapped.  相似文献   

18.
One fungus, tentatively named Penicillium sp. Li-3, was screened to biosynthesize β-d-mono-glucuronide-glycyrrhizin (GAMG), directly. Using glycyrrhizin as elicitor and the sole carbon source, this strain was capable of expressing β-d-glucuronidase, one intracellular enzyme with high substrate specificity. And glycyrrhizin was hydrolyzed directly into GAMG by enzyme from Penicillium sp. Li-3 with high production. It was found that the mol conversion ratio of this reaction was up to 88.45%. Research about kinetics of β-d-glucuronidase production showed that the cell growth and enzyme production of this strain was partial coupled. During the expressing of target enzyme, carbon catabolite repression existed, so only glycyrrhizin was the best carbon source as well as the elicitor. It was found that the surfactant (Tween 80 0.12%) could improve the ability of enzyme production markedly. Under the condition of initial pH 4.8 of the medium and 32 °C of the culture temperature, the maximum enzyme activity of 181.53 U ml−1 was obtained.  相似文献   

19.
Two iridoid glucosides, 8-epi-grandifloric acid and 3′-O-β-glucopyranosyl-stilbericoside, were isolated from the aerial part of Thunbergia laurifolia along with seven known compounds, benzyl β-glucopyranoside, benzyl β-(2′-O-β-glucopyranosyl) glucopyranoside, grandifloric acid, (E)-2-hexenyl β-glucopyranoside, hexanol β-glucopyranoside, 6-C-glucopyranosylapigenin and 6,8-di-C-glucopyranosylapigenin. Strucural elucidation was based on the analyses of spectroscopic data.  相似文献   

20.
Botryosphaeran, a (13;16)-β-d-glucan produced by Botryosphaeria rhodina MAMB-05, was found to be present in a triple helix conformation from helix–coil transition studies using Congo Red. The triple helix conformation was disrupted at increasing alkali concentrations. Conformational changes were also observed using phenanthrene as a fluorescent probe, and the fluorescence intensity decreased 80% in the presence of dimethyl sulfoxide. The results confirmed the triple helix conformation of botryosphaeran, an important property manifesting biological response modifying activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号