首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
3.
n-Alkanes, esters, aldehydes, free alcohols, -diketones and hydroxy--diketones were found to be the lipid components of the cuticular waxes of common wheat Chinese Spring (Triticum aestivum L.). The ditelosomic lines 7A-L and 7D-S showed a dramatic decrease in the amount of -diketones and hydroxy -diketones which are reduced to traces. The homologue composition within each class of compounds has also been determined for all three of the lines of wheat. The effects of chromosomal deficiencies have been demonstrated. Chromatographic techniques and mass spectrometry have been used for the separation and identification of the substances which compose the waxes. This study has provided further evidence of the role of genes situated on well defined chromosomes in determining the nature of classes of compounds composing wax and governing the homologous composition within each class of substances.  相似文献   

4.
In this paper, the wax secretions and wax glands of Matsucoccus matsumurae (Kuwana) at different instars were investigated using light microscopy, scanning electron microscopy and transmission electron microscopy. The first and second instar nymphs were found to secrete wax filaments via the wax glands located in the atrium of the abdominal spiracles, which have a center open and a series of outer ring pores. The wax gland of the abdominal spiracle possesses a large central wax reservoir and several wax-secreting cells. Third-instar male nymphs secreted long and translucent wax filaments from monolocular, biolocular, trilocular and quadrilocular pores to form twine into cocoons. The adult male secreted long and straight wax filaments in bundles from a group of 18–19 wax-secreting tubular ducts on the abdominal segment VII. Each tube duct contained five or six wax pores. The adult female has dorsal cicatrices distributed in rows, many biolocular tubular ducts and multilocular disc pores with 8–12 loculi secreting wax filaments that form the egg sac, and a rare type wax pores with 10 loculi secreting 10 straight, hollow wax filaments. The ultrastructure and cytological characteristics of the wax glands include wax-secreting cells with a large nucleus, multiple mitochondria and several rough endoplasmic reticulum. The functions of the wax glands and wax secretions are discussed.  相似文献   

5.
Wax on leaves of Agropyron intermedium contains hydrocarbons (11%, C27–C33), esters (11%, C32–C60), free alcohols (180%, C26) 25-oxohentriacontane-14,16-dione (17%), 10-oxohentriacontane-14,16-dione (5y%), 25-hydroxyhentriacontane-14,16-dione (12%) and 26-hydroxyhentriacontane-14,16-dione (2%). Wax on spikes contains additional components, C25–C33cis 9-alkenes (32% of hydrocarbons), and more β-diketones, 25-hydroxy (17%) and 26-hydroxy (3%) hentriacontane-14,16-diones, 10,25-dioxohentriacontane-14,16-dione (1%) and 4-hydroxy-25-oxo-(2%), 25-hydroxy-10-oxo-(1.3%) and 26-hydroxy-10-oxo-(0.7%) hentriacontane-14,16-diones; free alcohols were very minor components (1%, C24–C32).  相似文献   

6.
The “wax” of various species of Myrica is not a true wax, but a vegetable tallow extracted from the surface of the fruits. The principal use of the “wax” is for Christmas candles, but it is also used in soap, ointments, leatherpolishing formulations, etching, and medicinals.  相似文献   

7.
The composition of Colletia paradoxa epicuticular wax was determined. Hydrocarbons (27%), ketones (22%—mainly taraxerone), free acids (17%), free  相似文献   

8.
Microbial synthesis of wax esters (WE) from low-cost renewable and sustainable feedstocks is a promising path to achieve cost-effectiveness in biomanufacturing. WE are industrially high-value molecules, which are widely used for applications in chemical, pharmaceutical, and food industries. Since the natural WE resources are limited, the WE production mostly rely on chemical synthesis from rather expensive starting materials, and therefore solution are sought from development of efficient microbial cell factories. Here we report to engineer the yeast Yarrowia lipolytica and bacterium Escherichia coli to produce WE at the highest level up to date. First, the key genes encoding fatty acyl-CoA reductases and wax ester synthase from different sources were investigated, and the expression system for two different Y. lipolytica hosts were compared and optimized for enhanced WE production and the strain stability. To improve the metabolic pathway efficiency, different carbon sources including glucose, free fatty acid, soybean oil, and waste cooking oil (WCO) were compared, and the corresponding pathway engineering strategies were optimized. It was found that using a lipid substrate such as WCO to replace glucose led to a 60-fold increase in WE production. The engineered yeast was able to produce 7.6 g/L WE with a yield of 0.31 (g/g) from WCO within 120 h and the produced WE contributed to 57% of the yeast DCW. After that, E. coli BL21(DE3), with a faster growth rate than the yeast, was engineered to significantly improve the WE production rate. Optimization of the expression system and the substrate feeding strategies led to production of 3.7–4.0 g/L WE within 40 h in a 1-L bioreactor. The predominant intracellular WE produced by both Y. lipolytica and E. coli in the presence of hydrophobic substrates as sole carbon sources were C36, C34 and C32, in an order of decreasing abundance and with a large proportion being unsaturated. This work paved the way for the biomanufacturing of WE at a large scale.  相似文献   

9.
Abstract

We investigated how insects use wax as a defence against visual predators, using a New Zealand salticid species, Marpissa marina, as the predator and Eriosoma lanigerum, an aphid that covers itself with wax, as the prey. For live‐prey testing, the predator was presented with two aphids, one with its wax covering intact and one with its wax removed. The predator ate more of the waxless than wax‐covered aphids. The predators were presented with two lures at a time: (1) one that was fully covered with wax (hid the aphid's head) compared with one that was without wax (waxless) or (2) one that was fully covered with wax compared with one that was only partially covered with wax (the head of the prey exposed), or (3) one that was waxless compared with one that was partially covered with wax. The predators stalked waxless prey more often than they stalked prey that was fully or partially covered with wax. When wax only partially covered the prey (i.e., when the prey's head was left exposed), the predator more often stalked than when the insect was fully covered. These findings suggest that the aphid's wax covering functions in part to hide prey‐identification cues from vision‐guided predators.  相似文献   

10.
Leaf and stem wax of Panicum virgatum contains hydrocarbons (4%), esters (3%), free acids (2%), free alcohols (1%), triterpene alcohols (2%), β-diketones (69%) and hydroxy β-diketones (6%). Principal free alcohols range in chain length from C26 to C32. β-Diketones consist almost entirely of tritriacontane-12,14-dione and the hydroxy β-diketone consists only of 5(S)-5-hydroxytritriacontane-12,14-dione. The configuration of the hydroxyl group is the same as that of hydroxy β-diketones from festucoid grasses but opposite to that of the hydroxy β-diketone from Andropogon species.  相似文献   

11.
Leaf waxes from spring wheat varieties Selkirk and Manitou contain hydrocarbons (6%, 10%), long chain esters (14%, 13%), free acids (5%, 8%), free alcohols (19%, 21%), β-diketone (16%, 20%), hydroxy β-diketones (8%, 10%), unidentified gum (29%, 16.5%) and minor amounts of diol diesters, glycerides and aldehydes. The major hydrocarbon is nonacosane and major esters are octacosyl esters of C14–C32 acids but C20 and C22 alcohol esters of trans 2-docosenoic and tetracosenoic acids are also present (Selkirk 20%, Manitou 10% of total esters). Previously unknown trans 2-docosen-1-ol is present as an ester (Selkirk 5%, Manitou 2.5% of total esters). Free acids are C14–C32 acids and trans 2-docosenoic and tetracosenoic acids (Selkirk 30%, Manitou 9% of free acids). Octacosanol is the principal free alcohol. Hentriacontane-14,16-dione is the β-diketone and the hydroxy β-diketones are a 1:1 mixture of 8- and 9- hydroxyhentriacontane-14,16-diones.  相似文献   

12.
Epicuticular wax of Cirsium arvense contains hydrocarbons (12%), esters (35%), free acids (3%), free alcohols (10%), triterpene acetates (8%) and 1,3-ditetradecanoyl-2-hexanoylglycerol (8%) as major components. Minor components are triterpene alcohols (3%) and nonacosan-10-ol (2%). The esters contain triterpene alcohol esters (19%) as well as esters of alkanols.  相似文献   

13.
Epicuticular wax of Eragrostis curvula contains hydrocarbons (6%), esters (13%), acids (3%), alkanols (4%), tritriacontane-12,14-dione (47%), 5(S)-5-hydroxytritriacontane-12,14-dione (14%) as major components. The esters consist of triterpenol esters (42%) as well as alkanol esters. The free alkanols consist principally Of C16C32 components, resembling those of waxes from panicoid, and some other eragrostoid, grasses. Minor components are triterpenols (0.7%), triterpenones (0.5%), triacylglycerols (0.3%), secondary alkanols (0.1%) and 5-oxotritriacontane-12,14-dione (0.1%).  相似文献   

14.
15.
16.
17.
18.
Leaf wax of a glaucous variety of Poa ampla contains hydrocarbons (5%, C23–C35), esters (9%, C36–C56), free acids (3%, C16–C34), free alcohols (6%, mainly C26); hentriacontane-14,16-dione (14%), 5-oxohentriacontane-14,16-dione (1%); hydroxy β-diketones (56%) and unidentified material (6%). The hydroxy β-diketones, which are more abundant in this wax than in others, were shown by 13C NMR to consist of 4-hydroxy (15%), 5-hydroxy (70%) and 6-hydroxy (15%) hentriacontane-14,16-diones.  相似文献   

19.
The presence of a substantial proportion of branched, in addition to normal compounds, was confirmed in the alkyl ester and primary alcohol components  相似文献   

20.
Caroline Sargent 《Planta》1976,129(2):123-126
Summary Cytochemical reactions within the primary cuticle (cutinised layer) indicate that the lamellae are formed from polar lipids. The electron microscope shows that the lamellae are involved in wax formation and it is suggested that the polar lipids provide in situ precursors for the synthesis of cuticular wax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号