首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variability in penetration, development, and reproduction of two resistance-breaking field pathotypes (pt.) of Meloidogyne arenaria, M. incognita, and a population of mixed Meloidogyne spp. virulent to grape hosts were compared on two resistant Vitis rootstocks ''Freedom'' and ''Harmony'' in separate tests. ''Cabernet Sauvignon'' was included as a susceptible host to all four nematode populations. Secondstage juveniles (J2) of the mixed population failed to penetrate Freedom roots. By contrast, 6% of J2 in the M. incognita population penetrated Freedom roots but did not develop beyond the swollen J2 stage. The two resistance-breaking populations of M. arenaria differed in their virulence except on susceptible roots of Cabernet Sauvignon. More J2 of M. arenaria pt. Freedom penetrated Freedom roots and reached adult stage than did M. arenaria pt. Harmony. Later life stages of M. arenaria pt. Freedom occurred earlier and in greater numbers in Harmony roots than did M. arenaria pt. Harmony. Reproduction of M. arenaria pt. Freedom was greater in Freedom and Harmony roots than M. arenaria pt. Harmony. Thus, one population of M. arenaria is highly virulent and the other is moderately virulent.  相似文献   

2.
The life cycle of Belonolaimus longicaudatus was observed in vitro on excised roots of Zea mays. Roots were cultured on Gamborg''s B5 medium in petri dishes with 1.5% agar adjusted to pH 5.8 and incubated at 28 °C in darkness. Second-stage juveniles (J2) fed on the roots and started the second molt (M2) to the third-stage juveniles 2 days after inoculation (DAI). The third molt (M3) to the fourth-stage juveniles occurred 7 DAI, followed by the fourth molt (M4) to males 13 DAI or to females 14 DAI. Nematode gender differences were observed by the end of the fourth molt. The first male appeared 15 DAI and the first female 17 DAI, after which mating occurred. Males were attracted to females, and mating was observed. Mating was required for reproduction. Fertilized females began to lay eggs 19 DAI and continued egg laying without the further presence of males during a 90-day observation. All of the eggs hatched. Unfertilized females rarely laid eggs, and none of the eggs were able to hatch. Feeding took place between each molt and before egg deposition occurred. The first-stage juveniles molted in the eggs 4 days after deposition, and J2 hatched from eggs 5 days after egg deposition. The life cycle from J2 to J2 was completed in 24 days.  相似文献   

3.
The role of microbes associated with chicken litter in the suppression of Meloidogyne arenaria in amended soil was investigated. Amended soil treatments were prepared, including combinations of sterile and nonsterile chicken litter and soil. Microbial biomass in different treatments was compared by measuring carbon dioxide evolution. There was less CO₂ evolved in sterile litter than in nonsterile litter treatments. Tomato seedlings cv. Rutgers were transplanted into soil mixtures and inoculated with 2,000 M. arenaria eggs. After 10 days, fewer second-stage juveniles (J2) had penetrated the roots in soils amended with nonsterile litter than sterile litter. The effects of sterile and nonsterile litter-amended soil solutions on M. arenaria eggs and J2 were observed over a period of 6 days. A lower percentage of eggs remained apparently healthy in nonsterile than in sterile-amended soil solutions over 6 days. Microbial degradation of the egg shells was apparent. Fewer J2 survived in sterile- and nonsterile-amended-soil solutions as compared to water controls.  相似文献   

4.
Resistance to Meloidogyne arenaria in the peanut cultivar COAN is inherited as a single, dominant gene. The mechanism of resistance to M. arenaria in COAN was evaluated in three experiments. In the first experiment the number of second-stage juveniles (J2) of M. arenaria penetrating roots of the susceptible cultivar Florunner was higher than the number of J2 penetrating roots of the resistant peanut cultivar COAN (P < 0.05). In a second experiment it was determined that the root size and number of potential infection courts (root tips) were similar for the two peanut cultivars. The number of nematodes emigrating from roots of COAN after penetration was greater than emigrated from roots of Florunner (P < 0.05). Necrotic host tissue was rarely observed in roots of COAN infected with M. arenaria, suggesting that resistance to M. arenaria does not involve a necrotic, hypersensitive response. Most of the J2 observed in roots of COAN were restricted to the cortical tissue, with only 1 of 90 J2 observed being associated with the vascular cylinder, whereas in Florunner >70% of the J2 were associated with vascular tissues. Resistance in COAN may be due to constitutive factors in the roots.  相似文献   

5.
Responses of 17 Prunus rootstocks or accessions (11 from the subgenus Amygdalus and 6 from the subgenus Prunophora) were evaluated against 11 isolates of Meloidogyne spp. including one M. arenaria, four M. incognita, four M. javanica, one M. hispanica, and an unclassified population from Florida. Characterization of plant response to root-knot nematodes was based on a gall index rating. Numbers of females and juveniles plus eggs in the roots were determined for 10 of the rootstocks evaluated against one M. arenaria, one M. incognita, one M. javanica, and the Florida isolate. These 10 rootstocks plus Nemaguard and Nemared were retested by growing three different rootstock genotypes together in containers of soil infested individually with each of the above four isolates. Garfi and Garrigues almonds, GF.305 and Rutgers Red Leaf peaches, and the peach-almond GF.677 were susceptible to all isolates. Differences in resistance were detected among the other rootstocks of the subgenus Amygdalus. The peach-almond GF.557 and Summergrand peach were resistant to M. arenaria and M. incognita but susceptible to M. javanica and the Florida isolate. Nemaguard, Nemared, and its two hybrids G x N no. 15 and G x N no. 22 were resistant to all but the Florida isolate. In the subgenus Prunophora, Myrobalan plums P.1079, P.2175, P.2980, and P.2984; Marianna plum 29C; and P. insititia plum AD.101 were resistant to all isolates. Thus, two different genetic systems of RKN resistance were found in the subgenus Amygdalus: one system acting against M. arenaria and M. incognita, and another system also acting against M. javanica. Prunophora rootstocks bear a complete genetic system for resistance also acting against the Florida isolate. The hypotheses on the relationships between these systems and the corresponding putative genes of resistance are presented.  相似文献   

6.
Postinfection development of Meloidogyne chitwoodi from second-stage juveniles (J2) to mature females and egg deposition on ''Nugaines'' winter wheat required 105, 51, 36, and 21 days at 10, 15, 20, and 25 C. At 25 C, the J2 induced cavities and hyperplasia in the cortex and apical meristem of root tips with hypertrophy of cortical and apical meristem cell nuclei, 2 and 5 days after inoculation. Giant cells induced by late J2 were observed in the stele 10 days after inoculation. Clusters of egg-laying females were common on wheat root galls 25 days after inoculation. Juveniles penetrated wheat roots at 4 C and above, but not at 2 C, when inoculum was obtained from cultures grown at 20 C, but no penetration occurred at 4 C when inoculum was stored for 12 hours at 4 C before inoculation. In northern Utah, J2 penetrated Nugaines wheat roots in the field in mid-May, about 5 months after seedling emergence. M. chitwoodi eggs were first observed on wheat roots in mid-July when plants were in blossom. Only 40% of overwintered M. chitwoodi eggs hatched at 25 C.  相似文献   

7.
Penetration, post-infectional development, reproduction, and fecundity of Meloidogyne arenaria races 1 and 2 were studied on susceptible (CNS), partially resistant (Jackson), and highly resistant (PI 200538 and PI 230977) soybean genotypes in the greenhouse. The ability to locate and invade roots was similar between races, but more juveniles penetrated roots of susceptible CNS than the resistant genotypes. At 10 days after inoculation, 56% and 99% to 100% of race 1 second-stage juveniles were vermiform or sexually undifferentiated in CNS and the resistant genotypes, respectively. In contrast, only 2%, 42%, 44%, and 62% of race 2 juveniles had not initiated development in CNS, Jackson, PI 200538, and PI 230977, respectively. By 20 days after inoculation, 88% to 100% of race 2 nematodes in roots of all genotypes were females, whereas only 25% and 1% of race 1 were females in CNS and the resistant genotypes, respectively. For all four genotypes, race 1 produce 85% to 96% fewer eggs per root system 45 days after inoculation than race 2. At 45 days after inoculation race 2 produced more eggs on CNS than the other genotypes.  相似文献   

8.
The morphology of a population of Sphaeronema rumicis Kir''yanova found on cottonwood in Utah is illustrated by light and scanning electron micrographs, as well as by drawings. This is the first report of males of S. rumicis, a species also not known previously to occur in North America. S. rumicis females on cottonwood in the United States were smaller than those found by Kir''yanova on sorrel in the USSR. Females and second-stage juveniles (J2) from the United States had slightly shorter stylets than did females and J2 from the USSR. Males were vermiform and had degenerate esophagi. On secondary cottonwood roots S. rumicis induces formation of a syncytium originating from proliferated pericyclic cells. Thick outer walls, wall protuberances, absence of cell wall ingrowths, dense cytoplasm, and hypertrophied nuclei were the main characteristics of syncytia observed in S. rumicis-infected cottonwood roots.  相似文献   

9.
Segregation of resistance to Meloidogyne arenaria in six BC₅F₂ peanut breeding populations was examined in greenhouse tests. Chi-square analysis indicated that segregation of resistance was consistent with resistance being conditioned by a single gene in three breeding populations (TP259-3, TP262-3, and TP271-2), whereas two resistance genes may be present in the breeding populations TP259-2, TP263-2, and TP268-3. Nematode development in clonally propagated lines of resistant individuals of TP262-3 and TP263-2 was compared to that of the susceptible cultivar Florunner. Juvenile nematodes readily penetrated roots of all peanut genotypes, but rate of development was slower (P = 0.05) in the resistant genotypes than in Florunner. Host cell necrosis indicative of a hypersensitive response was not consistently observed in resistant genotypes of either population. Three RFLP loci linked to resistance at distances of 4.2 to 11.0 centiMorgans were identified. Resistant and susceptible alleles for RFLP loci R2430E and R2545E were quite distinct and are useful for identifying individuals homozygous for resistance in segregating populations.  相似文献   

10.
The yield response of Florunner peanut to different initial population (Pi) densities of Meloidogyne arenaria, M. javanica, and an undescribed Meloidogyne species (isolate 93-13a) was determined in microplots in 1995 and 1996. Seven Pi''s (0, 0.5, 1, 5, 10, 50, and 100 eggs and J2/500 cm³ soil) were used for each Meloidogyne species in both years. The three species reproduced abundantly on Florunner in both years. In 1995, mean reproduction differed among the three species; mean Rf values were 10,253 for isolate 93-13, 4,256 for M. arenaria, and 513 for M. javanica. In 1996, the reproduction of M. arenaria (mean Rf = 7,820) and isolate 93-13a (mean Rf = 7,506) were similar, and both had greater reproduction on peanut than did M. javanica (mean Rf = 2,325). All three nematode species caused root and pod galling, and a positive relationship was observed between Pi and the percentage of pods galled. Meloidogyne arenaria caused a higher percentage of pod galling than did M. javanica or isolate 93-13a. A negative linear relationship between log₁₀ (Pi + 1) and pod yield was observed for all three nematode species each year. The yield response slopes were similar except for that of M. javanica, which was less negative than that of isolate 93-13a in 1995, and less negative than that of M. arenaria and isolate 93-13a in 1996.  相似文献   

11.
Three described species of root-knot nematode parasitize peanut (Arachis hypogaea): Meloidogyne arenaria race 1 (Ma), M. hapla (Mh), and M. javanica (Mj). Peanut cultivars with broad resistance to Meloidogyne spp. will be useful regardless of the species present in the field. The objective of this study was to determine whether peanut genotypes with resistance to M. arenaria originating from three different breeding programs were also resistant to M. hapla and M. javanica. The experiment used a factorial arrangement (completely randomized) with peanut genotype and nematode population as the factors. The five peanut genotypes were ''COAN'' and AT 0812 (highly resistant to Ma), C209-6-13 (moderately resistant to Ma), and ''Southern Runner'' and ''Georgia Green'' (susceptible to Ma). The four nematode populations were two isolates of Ma (Gibbs and Gop) and one isolate each of Mh and Mj. On COAN or AT 0812, both Ma and Mj produced <10% of the eggs produced on Georgia Green. On the peanut genotype C209-6-13, Ma and Mj produced about 50% of the eggs produced on Georgia Green. None of the resistant genotypes exhibited a high level of resistance to Mh. The lack of resistance to Mh in any cultivars or advanced germplasm is a concern because the identity of a Meloidogyne sp. in a particular peanut field is generally not known. Breeding efforts should focus on moving genes for resistance to M. hapla into advanced peanut germplasm, and combining genes for resistance to the major Meloidogyne spp. in a single cultivar.  相似文献   

12.
Microplot and field experiments were conducted to determine relationships of population densities of Meloidogyne spp. to performance of flue-cured tobacco. A 3-yr microplot study of these interactions involved varying initial nematode numbers (Pi).and use of ethoprop to re-establish ranges of nematode densities. Field experiments included various nematicides at different locations. Regression analyses of microplot data from a loamy sand showed that cured-leaf yield losses on ''Coker 319'' for each 10-fold increase in Pi were as follows: M. javanica and M. arenaria—-13-19%; M. incognita—5-10%; M. hapla—3.4-5%; and 3% for M. incognita on resistant ''Speight G-28'' tobacco. A Pi of 750 eggs and larvae/500 cm³ of soil of all species except M. hapla caused a significant yield loss; only large numbers of M. hapla effected a loss. M. arenaria was the most tolerant species to ethoprop. Root-gall indices for microplot and most field-nematicide tests also were correlated negatively with yield. Relationships of Pi(s) and necrosis indices to yield were best characterized by linear regression models, whereas midseason numbers of eggs plus larvae (Pm) and sometimes gall indices vs. yield were better characterized by quadratic models. The relation of field Pm and yield was also adequately described by the Seinhorst model. Degrees of root galling, root necrosis, yield losses, and basic rates of reproduction on tobacco generally increased from M. hapla to M. incognita to M. arenaria to M. javanica.  相似文献   

13.
Five grape rootstocks were inoculated with 0, 100, 1,000, and 10,000 Pratylenchus vulnus. Dogridge and Saltcreek supported low average total numbers of P. vulnus, 136-705/pot, at 12 months after inoculation. Growth of both rootstocks was not affected. Harmony, Couderc 1613, and Ganzin 1 supported high average total numbers, 6-856 times the inoculum levels. Numbers in Harmony continued to increase at all levels but reduced root weight only at the 10,000 level after 12 months. Numbers in Couderc 1613 decreased by 15-30% after 12 months, and root weight was reduced at the 10,000 level. In Ganzin 1, total nematode numbers diminished after 12 months but were still at high levels; growth reduction was proportional to numbers of nematodes added. Meloidogyne incognita, M. javanica, and M. arenaria produced galls and egg masses in Harmony and Couderc 1613 only at 36 C. Galling in Ganzin 1 increased with increasing temperature. Galls in Ganzin 1 at 18 C supported mature females after 90 days. Harmony was resistant to M. incognita in single and concomitant inoculations of P. vulnus and M. incognita. At 250 days after inoculation, total numbers of P. vulnus increased above the inoculum level and the 150-day values; increase was greatest in P. vulnus added singly. Neither nematode species affected growth of Harmony.  相似文献   

14.
Single populations of Meloidogyne arenaria races 1 (MA1) and 2 (MA2) and M. hapla (MH), and mixed populations of MA1 + MA2 and MA1 + MH with four inoculum levels of eggs were tested on peanut cv. ''Florigiant'' and M. incognita-resistant tobacco cv. ''McNair 373'' in a greenhouse experiment. Root infection, female development, and reproduction of MA2 on peanut and MA1 on resistant tobacco were limited at 2 and 6 weeks. MA1, MH, and MA1 + MH on peanut had similar root infection (total parasitic forms per root unit) at both 2 and 6 weeks, and similar female development and reproduction potentials at 6 weeks. MA2 tended to depress root infection, female development, and reproduction of MA1 on peanut. MH had little effect on MA1 on this crop. On tobacco, MA2 population had greater incidence of root infection than did MH at 2 weeks. The two nematode species had similar development in roots at 6 weeks. All of these processes were restricted when either MA2 or MH was present together with MA1. As initial inoculum level of parasitically fit populations increased, relative infection ratio on both peanut and tobacco, and reproduction factor on peanut decreased. Populations that had high infection incidence and reproduction rates induced greater root galling than did other populations. Root galling was suppressed in the presence of antagonistic response between nematode populations.  相似文献   

15.
Florunner peanut and three soybean cultivars, Centennial, Gasoy 17, and Wright, were inoculated with 48-hour age cohorts of Meloidogyne arenari race 1 second-stage juveniles and placed in a growth chamber set to simulate early season (low temperature) and midseason (high temperature) conditions. Percentages of the initial inoculum penetrating roots 4 and 8 days after inoculation were 2-3 times higher in soybean cultivars than in peanut; 25% on susceptible soybean and 9% on peanut. Penetration and early development of M. arenaria were greater in the higher temperature environment. Penetration percentages were expressed as a function of cumulative degree-days by regression models. Development of M. arenaria 10, 20, and 30 days after inoculation was more rapid on peanut than on soybean. The resistant soybean cultivar Wright had slower development rates than did the other two soybean cultivars. Nematode growth and development were dependent on temperature. In greenhouse experiments, production of eggs by M. arenaria was more than 10 times greater on peanut than on susceptible soybean. The reproductive factor for Wright soybean was less than one, but plant growth parameters indicated that this cultivar was intolerant of M. arenavia.  相似文献   

16.
Rates of penetration and development ofMeloidogyne incognita race 4 in roots of resistant (inbred Mp307, and S4 lines derived from the open-pollinated varieties Tebeau and Old Raccoon) and susceptible (Pioneer 3110) corn genotypes were determined. Seedlings grown in styrofoam containers were inoculated with 5,000 eggs of M. incognita. Roots were harvested at 3-day intervals starting at 3 days after inoculation (DAI) to 27 DAI and stained with acid fuchsin. Penetration of roots by second-stage juveniles (J2) at 3 DAI was similar for the four corn genotypes. Meloidogyne incognita numbers in Tebeau, Old Raccoon, Mp307, and Pioneer 3110 peaked at 12, 12, 15, and 27 DAI, respectively. Nematode development in the resistant genotypes was greatly suppressed compared to Pioneer 3110. Resistance to M. incognita in these genotypes appears to be expressed primarily as slower nematode development rather than differences in J2 penetration.  相似文献   

17.
Two populations of Trophonema okamotoi parasitized by Pasteuria sp. were found on Liquidambar styraciflua (sweetgum) and on an unidentified tropical grass in north-central Florida. Endospores of this Pasteuria sp. attached to motile vermiform second-stage juveniles (J2) and males of T. okamotoi, but not to other developmental stages. Sporangia and new endospores were produced only inside the bodies of swollen and sedentary third- and fourth-stage juveniles and females that developed in the host roots. No egg masses were produced by infected T. okamotoi females. The endospore diameter from the tropical grass population was 4.93 μm and the central core diameter was 1.97 μm; measurements of endospores from the sweetgum populations were similar. Endospores that were collected from T. okamotoi and added to uninfected T. okamotoi and other plant-parasitic nematodes attached/to J2 of T. okamotoi but did not attach to juveniles and adults of Helicotylenchus pseudorotrustus, Pratylenchus brachyurus, or to J2 of either Meloidogyne arenaria race 1, M. incognita race 1, M. javanica, or Tylenchulus semipenetrans. Pasteuria sp. from T. okamotoi differed from the described Pasteuria species in endospore size, host preference, and rate of attachment.  相似文献   

18.
Use of resistant cultivars is a desirable approach to manage the peanut root-knot nematode (Meloidogyne arenaria). To incorporate resistance into commercially acceptable cultivars requires reliable, efficient screening methods. To optimize the resistance screening protocol, a series of greenhouse tests were done using seven genotypes with three levels of resistance to M. arenaria. The three resistance levels could be separated based on gall indices as early as two weeks after inoculation (WAI) using 8,000 eggs of M. arenaria per plant, while four or more weeks were needed when 1,000–6,000 eggs/plant were used. High inoculum densities (over 8,000 eggs/plant) were needed to separate the three resistance levels based on eggs per gram of root within eight WAI. A gall index based on percentage of galled roots could separate the three resistance levels at lower inoculum levels and earlier harvest dates than other assessment methods. The use of eggs vs. second-stage juveniles (J2) as inoculum provided similar results; however, it took three to five more days to collect J2 than to collect eggs from roots. Plant age affected gall index and nematode reproduction on peanut, especially on the susceptible genotypes AT201 and D098. The genotypes were separated into their correct resistance classes when inoculated 10 to 30 days after planting, but were not separated correctly when inoculated on day 40.  相似文献   

19.
Population densities ofMeloidogyne konaensis were determined in March and July of 1991 and 1992 on coffee cultivars Guatemalan and 502, and on four rootstocks (Purpuree, Congensis, Deweveri, and Kaffe) with Guatemalan or 502 as a scion. Three-dimensional spatial patterns were characterized on roots of Guatemalan and Deweveri. Population densities differed among rootstocks (P < 0.05) and times (P < 0.01). The greatest number of second-stage juveniles (J2) occurred on Guatemalan and fewest J2 on Purpuree and Deweveri rootstocks. More nematodes were found in March than in July of both years. The spatial distribution varied by positions and depths on Guatemalan. The highest nematode population density occurred at 60 cm from the base of the tree and 15-45 cm deep. Numbers of nematodes were relatively low at all positions and all depths on the Guatemalan-Deweveri combination.  相似文献   

20.
The rates of soybean root penetration by freshly hatched second-stage juveniles (J2) of Meloidogyne arenaria, M. hapla, M. incognita, M. javanica, and Heterodera glycines races 1 and 5 were examined over a period of 1 to 240 hours. Heterodera glycines entered roots more quickly than Meloidogyne spp. Penetration by most nematodes was accomplished within 48 hours. The increases in penetration after 48 hours were insufficient to warrant further assessments. Penetration of J2 into roots of soybean seedfings in a styrofoam container was as good or better than in a clay pot. Thus, rapid and accurate root-penetration assessments can be made at 48 hours after inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号