首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Trends in cell biology》2023,33(3):179-181
The endoplasmic reticulum (ER) has evolved multiple mechanisms to maintain homeostasis under stress conditions. A recent study by Efstathiou et al. identified a novel mechanism of silencing ER-associated RNAs by the exogenous RNA interference pathway. This adaptive response reduces protein flux in the ER under stressful conditions.  相似文献   

2.
Osteoarthritis (OA), characterized by pain and stiffness, swelling, deformity and dysfunction of joints, affects large numbers of population. The purpose of this study was to discover the effects of taurine in human OA chondrocytes and explore the underlying mechanisms. 46 patients with different grades of OA were recruited. Of these patients, 24 underwent total knee replacement and cartilages were harvested. The mRNA expressions of type II collagen (Collagen II) and endoplasmic reticulum (ER) stress markers (GRP78, GADD153 and Caspase-12) in cartilages were quantified by qRT-PCR. Cell viability and apoptosis of patient-derived chondrocytes were assessed by the CCK-8 assay and flow cytometry assay, respectively. Meanwhile, protein levels of Collagen II and ER stress markers both in cartilages and chondrocytes were evaluated by Western blot. The mRNA and protein levels of Collagen II decreased as OA progressed, while the expressions of ER stress markers increased dramatically. H2O2 induced ER stress in chondrocytes, as shown by the significant increase in the expression of ER stress markers, inhibited chondrocyte viability and Collagen II synthesis, promoted apoptosis. However, taurine treatment inhibited these above phenomena. These results indicated that taurine exhibited anti-OA effect by alleviating H2O2 induced ER stress and subsequently inhibiting chondrocyte apoptosis.  相似文献   

3.
Hyperlipidemia in the general population has been linked to the development of chronic kidney disease with both oxidative and endoplasmic reticulum stress implicated. Physiological levels (50-300 µmol/L) of saturated fatty acids such as palmitic acid (PA) cause cytotoxicity in vitro. We investigated cell type- and stimulus-specific signaling pathways induced by PA in renal proximal tubular cells and whether oxidative stress leads to ER stress or vice versa and which pathways predominate in signaling for PA-induced apoptosis and necrosis. NRK-52E cells were incubated with PA or hydrogen peroxide (H2O2) combined with SP600125 which blocks c-Jun N-terminal kinase (JNK) activation; salubrinal, which maintains eukaryotic initiation factor 2α in its phosphorylated state and the antioxidant EUK-134 - a superoxide dismutase mimetic with catalase activity. We found that (i) PA causes both oxidative and ER stress leading to apoptosis which is mediated by phosphorylated JNK; (ii) oxidant-induced apoptosis generated by H2O2 involves ER stress signaling and CHOP expression; (iii) the ER stress mediated by PA is largely independent of oxidative stress; (iv) in contrast, the apoptosis produced by PA is mediated partly via oxidative stress. PA-mediated cell signaling in renal NRK-52E cells therefore differs from that identified in neuronal, hepatic and pancreatic beta cells.  相似文献   

4.
内质网应激偶联炎症反应与慢性病发病机制   总被引:1,自引:0,他引:1  
Yan J  Hu ZW 《生理科学进展》2010,41(4):261-266
内质网是合成细胞内分泌蛋白和膜蛋白并进行蛋白折叠的主要细胞器。新近研究证明,当内质网蛋白质合成与折叠的负担增加、非折叠或错误折叠蛋白质堆积,可激活内质网的几组特定信号转导通路,将这些应激信号传递到细胞浆和细胞核,引起未/错误折叠蛋白反应。这对维持细胞动态平衡和生物体的发育具有重要意义。更为重要的是,未/错误折叠蛋白反应能够与细胞内炎症反应信号转导通路偶联,是非感染性致病原引发炎症反应的主要原因。因此,内质网应激-未/错误折叠蛋白反应-炎症反应在特定的细胞发生偶联是许多炎症疾病的发病机制。本文综述该领域的研究进展,并介绍了内质网应激信号和炎症反应偶联参与一些慢性病发病的分子细胞机制。这些研究不仅加深人们对这些慢性病发病机制的了解,也有助于对调节内质网应激-炎症反应的药物的研发。  相似文献   

5.
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta (SNPC) and the presence of intracytoplasmatic inclusions known as Lewy bodies, largely composed of alpha-synuclein (α-syn). PD is a multifactorial disease and its etiology remains largely elusive. Although more than 90% of the cases are sporadic, mutations in several nuclear encoded genes have been linked to the development of autosomal recessive and dominant familial parkinsonian syndromes (Bogaerts et al. (2008) Genes Brain Behav 7, 129-151), enhancing our understanding of biochemical and cellular mechanisms contributing to the disease. Many cellular mechanisms are thought to be involved in the dopaminergic neuronal death in PD, including oxidative stress, intracellular Ca(2+) homeostasis impairment, and mitochondrial dysfunctions. Furthermore, endoplasmic reticulum (ER) stress together with abnormal protein degradation by the ubiquitin proteasome system is considered to contribute to the PD pathogenesis. This review covers all the aspects related to the molecular mechanisms underlying the interplay between mitochondria, ER, and proteasome system in PD-associated neurodegeneration.  相似文献   

6.
骨骼肌拥有高度发达的内质网,又被称为肌浆网,不仅可以作为钙泵完成肌肉的兴奋收缩偶联反应,还可对各种生理或病理性刺激迅速做出反应,通过内质网应激反应,激活下游信号通路,赋予骨骼肌应对外界或内在刺激的能力。因此,骨骼肌内丰富的内质网是骨骼肌具有高度可塑性的细胞学基础。大量研究表明,内质网应激广泛参与了骨骼肌的生理和病理进程,本文就内质网应激在骨骼肌成肌分化、萎缩和运动的作用进行了综述。  相似文献   

7.

Background

The endoplasmic reticulum (ER) is the cellular site for protein folding. ER stress occurs when protein folding capacity is exceeded. This stress induces a cyto-protective signaling cascades termed the unfolded protein response (UPR) aimed at restoring homeostasis. While acute ER stress is lethal, chronic sub-lethal ER stress causes cells to adapt by attenuation of UPR activation. Hepatitis C virus (HCV), a major human pathogen, was shown to cause ER stress, however it is unclear whether HCV induces chronic ER stress, and if so whether adaptation mechanisms are initiated. We wanted to characterize the kinetics of HCV-induced ER stress during infection and assess adaptation mechanisms and their significance.

Methods and Findings

The HuH7.5.1 cellular system and HCV-transgenic (HCV-Tg) mice were used to characterize HCV-induced ER stress/UPR pathway activation and adaptation. HCV induced a wave of acute ER stress peaking 2–5 days post-infection, which rapidly subsided thereafter. UPR pathways were activated including IRE1 and EIF2α phosphorylation, ATF6 cleavage and XBP-1 splicing. Downstream target genes including GADD34, ERdj4, p58ipk, ATF3 and ATF4 were upregulated. CHOP, a UPR regulated protein was activated and translocated to the nucleus. Remarkably, UPR activity did not return to baseline but remained elevated for up to 14 days post infection suggesting that chronic ER stress is induced. At this time, cells adapted to ER stress and were less responsive to further drug-induced ER stress. Similar results were obtained in HCV-Tg mice. Suppression of HCV by Interferon-α 2a treatment, restored UPR responsiveness to ER stress tolerant cells.

Conclusions

Our study shows, for the first time, that HCV induces adaptation to chronic ER stress which was reversed upon viral suppression. These finding represent a novel viral mechanism to manipulate cellular response pathways.  相似文献   

8.
9.
Shenoy C  Boura J  Orshaw P  Harjai KJ 《PloS one》2010,5(11):e15070

Background

Chronic kidney disease (CKD) is strongly associated with adverse outcomes after percutaneous coronary intervention (PCI). There are limited data on the effectiveness of drug-eluting stents (DES) in patients with CKD.

Methodology/Principal Findings

Of 3,752 consecutive patients enrolled in the Guthrie PCI Registry between 2001 and 2006, 436 patients with CKD - defined as a creatinine clearance <60 mL/min - were included in this study. Patients who received DES were compared to those who received bare metal stents (BMS). Patients were followed for a mean duration of 3 years after the index PCI to determine the prognostic impact of stent type. Study end-points were all-cause death, myocardial infarction (MI), target vessel revascularization (TVR), stent thrombosis (ST) and the composite of major adverse cardiovascular events (MACE), defined as death, MI or TVR. Patients receiving DES in our study, by virtue of physician selection, had more stable coronary artery disease and had lower baseline risk of thrombotic or restenotic events. Kaplan-Meier estimates of proportions of patients reaching the end-points were significantly lower for DES vs. BMS for all-cause death (p = 0.0008), TVR (p = 0.029) and MACE (p = 0.0015), but not MI (p = 0.945) or ST (p = 0.88). Multivariable analysis with propensity adjustment demonstrated that DES implantation was an independent predictor of lower rates of all-cause death (hazard ratio [HR] 0.48, 95% confidence interval [CI] 0.25–0.92), TVR (HR 0.50, 95% CI 0.27–0.94) and MACE (HR 0.62, 95% CI 0.41–0.94).

Conclusions

In a contemporary PCI registry, selective use of DES in patients with CKD was safe and effective in the long term, with lower risk of all-cause death, TVR and MACE and similar risk of MI and ST as compared with BMS. The mortality benefit may be a result of selection bias and residual confounding, or represent a true finding; a hypothesis that warrants clarification by randomized clinical trials.  相似文献   

10.
Molecular Biology Reports - The current study was set to assess the effect of heat stress exposure on oxidative stress, apoptosis, and endoplasmic reticulum stress markers in the cerebellum of male...  相似文献   

11.
N,N-Dimethylformamide (DMF) is an organic solvent extensively used in industries such as synthetic leather, fibers and films, and induces liver toxicity and carcinogenesis. Despite a series of experimental and clinical reports on DMF-induced liver failure, the mechanism of toxicity is yet unclear. This study investigated whether DMF in combination with a low dose of hepatotoxicant enhances hepatotoxicity, and if so, on what mechanistic basis. Treatment of rats with either DMF (50–500 mg/kg/day, for 3 days) or a single low dose of CCl4 (0.2 ml/kg) alone caused small increases in plasma transaminases and lactate dehydrogenase activities. However, combinatorial treatment of DMF with CCl4 markedly increased blood biochemical changes. Histopathology confirmed the synergism in hepatotoxicity. Moreover, DMF + CCl4 caused PARP cleavage and caspase-3 activation, but decreased the level of Bcl-xL, all of which confirmed apoptosis of hepatocytes. Consistently, DMF + CCl4 treatment markedly increased lipid peroxidation. By contrast, treatment of DMF in combination with lipopolysaccharide, acetaminophen or d-galactosamine caused no enhanced hepatotoxicity. Given the link between endoplasmic reticulum (ER) dysfunction and cell death, ER stress response was monitored after DMF and/or CCl4 treatment. Whereas either DMF or CCl4 treatment alone marginally changed the expression levels of glucose-regulated protein 78 and 94 and phosphorylated PKR-like ER-localized eIF2α kinase, concomitant treatment with DMF and CCl4 synergistically induced them with increases in glucose-regulated protein 78 and C/EBP homologous protein mRNAs. Our results demonstrate that DMF treatment in combination with CCl4 synergistically increases hepatocyte death, which may be associated with the induction of severe ER stress.  相似文献   

12.
13.
Involvement of endoplasmic reticulum stress in insulin resistance and diabetes   总被引:10,自引:0,他引:10  
Type 2 diabetes is one of the most prevalent and serious metabolic diseases in the world, and insulin resistance and pancreatic beta-cell dysfunction are the hallmarks of the disease. In this study, we have shown that endoplasmic reticulum (ER) stress, which is provoked under diabetic conditions, plays a crucial role in the insulin resistance found in diabetes by modifying the expression of oxygen-regulated protein 150 (ORP150), a molecular chaperone that protects cells from ER stress. Sense ORP overexpression in the liver of obese diabetic mice significantly improved insulin resistance and markedly ameliorated glucose tolerance. Conversely, expression of antisense ORP150 in the liver of normal mice decreased insulin sensitivity. The phosphorylation state of IRS-1 and Akt, which are key molecules for insulin signaling, and the expression levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, key enzymes of gluconeogenesis, were also altered by ORP150 overexpression. This is the first report showing that ER stress plays a crucial role in the insulin resistance found in diabetes and thus could be a potential therapeutic target for diabetes.  相似文献   

14.
15.
Cellular response to endoplasmic reticulum stress: a matter of life or death   总被引:12,自引:0,他引:12  
The proper functioning of the endoplasmic reticulum (ER) is critical for numerous aspects of cell physiology. Accordingly, all eukaryotes react rapidly to ER dysfunction through a set of adaptive pathways known collectively as the ER stress response (ESR). Normally, this suite of responses succeeds in restoring ER homeostasis. However, in metazoans, persistent or intense ER stress can also trigger programmed cell death, or apoptosis. ER stress and the apoptotic program coupled to it have been implicated in many important pathologies but the regulation and execution of ER stress-induced apoptosis in mammals remain incompletely understood. Here, we review what is known about the ESR in both yeast and mammals, and highlight recent findings on the mechanism and pathophysiological importance of ER stress-induced apoptosis.  相似文献   

16.
Many inflammatory and infectious diseases are characterized by the activation of signaling pathways steaming from the endoplasmic reticulum (ER). These pathways, primarily associated with loss of ER homeostasis, are emerging as key regulators of inflammation and infection. Recent advances shed light on the mechanisms linking ER-stress and immune responses.  相似文献   

17.
We have characterized the properties and putative role of a mammalian thioredoxin-like protein, ERp16 (previously designated ERp18, ERp19, or hTLP19). The predicted amino acid sequence of the 172-residue human protein contains an NH(2)-terminal signal peptide, a thioredoxin-like domain with an active site motif (CGAC), and a COOH-terminal endoplasmic reticulum (ER) retention sequence (EDEL). Analyses indicated that the mature protein (comprising 146 residues) is generated by cleavage of the 26-residue signal peptide and is localized in the lumen of the ER. Biochemical experiments with the recombinant mature protein revealed it to be a thioldisulfide oxidoreductase. Its redox potential was about -165 mV; its active site cysteine residue Cys(66) was nucleophilic with a pK(a) value of approximately 6.6; it catalyzed the formation, reduction, and isomerization of disulfide bonds, with the unusual CGAC active site motif being responsible for these activities; and it existed as a dimer and underwent a redox-dependent conformational change. The observations that the redox potential of ERp16 (-165 mV) was within the range of that of the ER (-135 to -185 mV) and that ERp16 catalyzed disulfide isomerization of scrambled ribonuclease A suggest a role for ERp16 in protein disulfide isomerization in the ER. Expression of ERp16 in HeLa cells inhibited the induction of apoptosis by agents that elicit ER stress, including brefeldin A, tunicamycin, and dithiothreitol. In contrast, expression of a catalytically inactive mutant of ERp16 potentiated such apoptosis, as did depletion of ERp16 by RNA interference. Our results suggest that ERp16 mediates disulfide bond formation in the ER and plays an important role in cellular defense against prolonged ER stress.  相似文献   

18.
The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the identification of a specialized form of ER, termed "nodal ER," which is found exclusively in columella cells; the demonstration that the bulk of the ER is organized in the form of a tubular network that is confined to a peripheral layer under the plasma membrane; and the discovery that this ER-rich peripheral region excludes Golgi stacks, vacuoles, and amyloplasts but not mitochondria. Nodal ER domains consist of an approximately 100-nm-diameter central rod composed of oblong subunits to which usually seven sheets of rough ER are attached along their margins. These domains form patches at the interface between the peripheral ER network and the ER-free central region of the cells, and they occupy defined positions within central and flanking columella cells. Over one-half of the nodal ER domains are located along the outer tangential walls of the flanking cells. Cytochalasin D and latrunculin A cause an increase in size and a decrease in numbers of nodal ER domains. We postulate that the nodal ER membranes locally modulate the gravisensing signals produced by the sedimenting amyloplasts, and that the confinement of all ER membranes to the cell periphery serves to enhance the sedimentability of the amyloplasts in the central region of columella cells.  相似文献   

19.
The chaperone calreticulin plays important roles in a variety of processes in the endoplasmic reticulum (ER) of animal cells, such as Ca2+ signaling and protein folding. Although the functions of calreticulin are well characterized in animals, only indirect evidence is available for plants. To increase our understanding of plant calreticulins we introduced one of the Arabidopsis isoforms, AtCRT1a, into calreticulin-deficient (crt-/-) mouse embryonic fibroblasts. As a result of calreticulin deficiency, the mouse crt-/- fibroblasts have decreased levels of Ca2+ in the ER and impaired protein folding abilities. Expression of the AtCRT1a in mouse crt-/- fibroblasts rescued these phenotypes, i.e. AtCRT1a restored the Ca2+-holding capacity and chaperone functions in the ER of the mouse crt-/- fibroblasts, demonstrating that the animal sorting machinery was also functional for a plant protein, and that basic calreticulin functions are conserved across the Kingdoms. Expression analyses using a beta-glucuronidase (GUS)-AtCRT1a promoter construct revealed high expression of CRT1a in root tips, floral tissues and in association with vascular bundles. To assess the impact of AtCRT1a in planta, we generated Atcrt1a mutant plants. The Atcrt1a mutants exhibited increased sensitivity to the drug tunicamycin, an inducer of the unfolded protein response. We therefore conclude that AtCRT1a is an alleviator of the tunicamycin-induced unfolded protein response, and propose that the use of the mouse crt-/- fibroblasts as a calreticulin expression system may prove useful to assess functionalities of calreticulins from different species.  相似文献   

20.
Following endoplasmic reticulum (ER) stress that prevents correct folding or assembly of ER proteins, at least three responses occur to maintain cell homeostasis: induction of chaperones, attenuation of protein synthesis, and enhancement of lipid synthesis. Transducers that transmit ER stress to the nucleus have already been identified in yeast and mammals. We report here isolation of a cDNA, OsIre1, from rice encoding a putative homolog of Ire1p, a yeast transducer of ER stress. OsIre1 encodes a polypeptide consisting of 893 amino acids, in which two hydrophobic stretches are present in the amino-terminal (N-terminal) and middle regions, possibly serving as a signal peptide and a transmembrane domain, respectively. The carboxyl-terminal (C-terminal) domain was found to possess serine/threonine protein kinase and ribonuclease-like domains showing high similarities with regions in Ire1 homologs from other organisms. A fusion protein of OsIre1 and green fluorescent protein (GFP) expressed in tobacco BY2 cells could be demonstrated to localize to the ER and the N-terminal domain of OsIre1 could substitute for yeast Ire1p in yeast cells. When produced in bacteria as a fusion protein, the C-terminal region of OsIre1 showed autophosphorylation activity. These results thus indicate that OsIre1 encodes a putative plant transducer of ER stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号