首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Drought is one of the most serious abiotic stresses to land plants. Plants sense and respond to drought stress to survive under water deficiency. Scientists have studied how plants sense drought stress, or osmotic stress caused by drought, ever since Charles Darwin, and gradually obtained clues about osmotic stress sensing and signaling in plants. Osmotic stress is a physical stimulus that triggers many physiological changes at the cellular level, including changes in turgor,cell wall stiffness ...  相似文献   

4.
In rice, limited efforts have been made to identify genes by the use of insertional mutagens, especially heterologous transposons such as the maize Ac/Ds. We constructed Ac and gene trap Ds vectors and introduced them into the rice genome by Agrobacterium-mediated transformation. In this report, rice plants that contained single and simple insertions of T-DNA were analysed in order to evaluate the gene-tagging efficiency. The 3' end of Ds was examined for putative splicing donor sites. As observed in maize, three splice donor sites were identified at the 3' end of the Ds in rice. Nearly 80% of Ds elements were excised from the original T-DNA sites, when Ac cDNA was expressed under a CaMV 35S promoter. Repetitive ratoon culturing was performed to induce new transpositions of Ds in new plants derived from cuttings. About 30% of the plants carried at least one Ds which underwent secondary transposition in the later cultures. Eight per cent of transposed Ds elements expressed GUS in various tissues of rice panicles. With cloned DNA adjacent to Ds, the genomic complexities of the insertion sites were examined by Southern hybridization. Half of the Ds insertion sites showed simple hybridization patterns which could be easily utilized to locate the Ds. Our data demonstrate that the Ac/Ds-mediated gene trap system could prove an excellent tool for the analysis of functions of genes in rice. We discuss genetic strategies that could be employed in a large scale mutagenesis using a heterologous Ac/Ds family in rice.  相似文献   

5.
The terrestrial macroscopic cyanobacterium Nostoc commune exhibits remarkable resistance to desiccation stress. This species synthesizes abundant acidic water stress protein (WSPA) in cells upon desiccation and secretes it into the extracellular polysaccharide sheath upon rehydration. However, our knowledge about its cellular role in stress resistance is still rather limited. In this paper, we first revealed that WSPA also occurred in two other macroscopic cyanobacteria Nostoc flagelliforme and Nostoc sphaeroides, but it is more abundant in N. commune. The N. commune wspa1 gene was then heterologously expressed in Arabidopsis thaliana. Phenotypic observation found that WSPA1 conferred increased tolerance to osmotic stress in transgenic plants. The physiological indexes such as relative electrolyte leakage, malondialdehyde, proline accumulation and the maximal quantum efficiency of Photosystem II, were also improved in transgenic plants upon osmotic stress, compared to wild types. In addition, GFP fluorescence analysis of eGFP::wspa1 transgenic plant showed that WSPA1 was localized in the cytoplasm. Therefore, the role of WSPA revealed by this study mainly represented its intracellular function. In general, our research suggested that WSPA may act as a stress protein and involve cellular osmotic stress resistance.  相似文献   

6.
7.
The cbnA gene encoding the chlorocatechol dioxygenase gene from Ralstonia eutropha NH9 was introduced into rice plants. The cbnA gene was expressed in transgenic rice plants under the control of a modified cauliflower mosaic virus 35S promoter. Western blot analysis using anti-CbnA protein indicated that the cbnA gene was expressed in leaf tissue, roots, culms, and seeds. Transgenic rice calluses expressing the cbnA gene converted 3-chlorocatechol to 2-chloromucote efficiently. Growth and morphology of the transgenic rice plants expressing the cbnA gene were not distinguished from those of control rice plants harboring only a Ti binary vector. It is thus possible to breed transgenic plants that degrade chloroaromatic compounds in soil and surface water.  相似文献   

8.
Familial juvenile hyperuricemic nephropathy is caused by mutations in the UMOD gene encoding uromodulin. A transgenic mouse model was developed by introducing a human mutant UMOD (C148W) cDNA under control of the mouse umod promoter. Uromodulin accumulation was observed in the thick ascending limb cells in the kidney of transgenic mice. However, the urinary excretion of uromodulin in transgenic mice did not decrease and LC-MS/MS analysis indicated it was of mouse origin. Moreover, the creatinine clearance was not different between wildtype and transgenic animals. Consequently, the onset of the disease was not observed in transgenic mice until 24 weeks of age.  相似文献   

9.
A quantitative trait loci (QTL) approach was applied to dissect the genetic control of the common wheat seedling response to osmotic stress. A set of 114 recombinant inbred lines was subjected to osmotic stress from the onset of germination to the 8th day of seedling development, induced by the presence of 12 % polyethylene glycol. Root, coleoptile and shoot length, and root/shoot length ratio were compared under stress and control conditions. In all, 35 QTL mapping to ten chromosomes, were identified. Sixteen QTL were detected in controls, 17 under stressed conditions, and two tolerance index QTL were determined. The majority of the QTL were not stress-specific. In regions on five chromosome arms (1AS, 1BL, 2DS, 5BL and 6BL) the QTL identified under stress co-mapped with QTL affecting the same trait in controls, and these were classified as seedling vigour QTL, in addition to those expressed in controls. Tolerance-related QTL were detected on four chromosome arms. A broad region on chromosome 1AL, including five QTL, with a major impact of the gene Glu-A1 (LOD 3.93) and marker locus Xksuh9d (LOD 2.91), positively affected root length under stress and tolerance index for root length, respectively. A major QTL (LOD 3.60), associated with marker locus Xcdo456a (distal part of chromosome arm 2BS) determined a tolerance index for shoot length. Three minor QTL (LOD < 3.0) for root length and root/shoot length ratio under osmotic stress were identified in the distal parts of chromosome arms 6DL (marker locus Xksud27a) and 7DL (marker locus Xksue3b). Selecting for the favourable alleles at marker loci associated with the detected QTL for growth traits may represent an efficient approach to enhance the plants’ ability to maintain the growth of roots, coleoptile and shoots in drought-prone soils at the critical early developmental stages.  相似文献   

10.
The cell wall is a fundamental component in the response of plants to environmental changes. To directly assess the role of the cell wall we have increased the expression and activity of a cell wall associated peroxidase (TPX2), an enzyme involved in modifying cell wall architecture. Overexpression of TPX2 had no effect on wild-type development, but greatly increased the germination rate under high salt or osmotic stress. Differential scanning calorimetry showed that transgenic seeds were able to retain more water available for germination than wild-type seeds. Thermoporometry calculations indicated that this could be due to a lower mean pore size in the walls of transgenic seeds. Therefore, the higher capacity of transgenic seeds in retaining water could result in higher germination rates in conditions where the availability of water is restricted.  相似文献   

11.
About 25,000 rice T-DNA insertional mutant lines were generated using the vector pCAS04 which has both promoter-trapping and activation-tagging function. Southern blot analysis revealed that about 40% of these mutants were single copy integration and the average T-DNA insertion number was 2.28. By extensive phenotyping in the field, quite a number of agronomically important mutants were obtained. Histochemical GUS assay with 4,310 primary mutants revealed that the GUS-staining frequency was higher than that of the previous reports in various tissues and especially high in flowers. The T-DNA flanking sequences of some mutants were isolated and the T-DNA insertion sites were mapped to the rice genome. The flanking sequence analysis demonstrated the different integration pattern of the right border and left border into rice genome. Compared with Arabidopsis and poplar, it is much varied in the T-DNA border junctions in rice.  相似文献   

12.
Metabolic engineering of plants for osmotic stress resistance.   总被引:14,自引:0,他引:14  
Genes encoding critical steps in the synthesis of osmoprotectant compounds are now being expressed in transgenic plants. These plants generally accumulate low levels of osmoprotectants and have increased stress tolerance. The next priority is therefore to engineer greater osmoprotectant synthesis without detriment to the rest of metabolism. This will require manipulation of multiple genes, guided by thorough analysis of metabolite fluxes and pool sizes.  相似文献   

13.
Summary Zeatin and its derivatives are major consituents of higher plant cytokinins. Metabolic steps modifying the isoprenoid side chain, such as O-glycosylation, are expected to have a direct bearing on cytokinin-mediated processes. To examine this possibility, transgenic tobacco plants were generated harboring a gene (ZOG1) encoding a zeatin O-glucosyltransferase from Phaseolus lunatus under the control of a constitutive (35S) and an inducible (Tet) promoter. The presence of the transgene resulted in elevated enzyme production and conversion of exogenous zeatin to its O-glucoside, confirming the expression of the ZOG1 gene in transgenic plants. Endogenous O-glucosylzeatin was increased from less than 1 pmol per g fresh weight in leaves and roots of controls to 26 and 68 pmol per g fresh weight in leaves and roots of 35S-ZOG1 transformants, respectively. In cytokinin/auxin interaction experiments, Tet-ZOG1 leaf discs, in the presence of tetracycline, required 10-fold higher zeatin concentrations for the formation of shoots and callus than the controls. In 35S-ZOG1 plants, developmental changes included adventitious root formation on the lower stems, shorter stature, and axillary shoot growth. Thus, increased zeatin O-glucosylation in detached, cytokinin-dependent tissues leads to a shift in the response to exogenous zeatin indicative of cytokinin sequestering. In whole plants the effect can simulate a reduction or a rise in cytokinin activity depending on the tissue and stage of development. The use of tissue- and stagespecific promoters in the future will allow more precise analyses and targeted growth alterations.  相似文献   

14.
In the present study, a 0.47 kb OMT gene construct from aspen, encoding for an enzyme O-methyltransferase (OMT, EC 2.1.1.6), in antisense orientation was used to down-regulate lignin biosynthesis in Leucaena leucocephala. The plants were transformed with Agrobacterium tumefaciens strain harboring the antisense gene, and the transformation was confirmed by PCR amplification of the npt II gene. The integration of a heterologous antisense OMT gene construct in transformed plants led to a maximum of 60% reduction in OMT activity relative to control. The evaluation of total lignin content by the Klason method revealed a maximum of 28% reduction. Histochemical analyses of stem sections depicted a reduction in lignin content and normal xylem development. The results also suggested a probable increase in aldehyde levels and a decrease in syringyl units. Lignin down-regulation was accompanied by an increase in methanol soluble phenolics to an extent that had no impact on wood discoloration, and the plants displayed a normal phenotype. Concomitantly, an increase of up to 9% in cellulose content was also observed. Upon alkali extraction, modified lignin was more extractable as evident from reduced Klason lignin in saponified residue and increased alkali soluble phenolics. The results together suggested that the extent of down-regulation of OMT activity achieved may lead to quality amelioration of Leucaena with respect to its applicability in pulp and paper manufacture as well as nutritive and easily digestible forage production.  相似文献   

15.
16.
In this study, we evaluated the effect of osmotic stress on photosynthetic machinery of Arabidopsis plants expressing a gene encoding small basic intrinsic protein (SIP1) isolated from Solanum tuberosum. Intact leaves of SIP Arabidopsis plants were exposed to 15% polyethylene glycol (PEG) solution and fast Chlorophyll-a (Chl-a) fluorescence induction kinetics was measured. Photosynthetic parameters like ratio of variable and maximum fluorescence (FV/FM), absorbance of photons per active reaction center (ABS/RC), trapping of photons per active reaction center (TRo/RC), electron transport per active reaction center (ETo/RC), and performance index (PI) were measured. Furthermore, the energy pipeline model was deduced in response to PEG stress. The membrane model includes a visualization of the average “antenna size”, which follows the value of the ABS/RC. Analysis of SIP Arabidopsis plants under PEG stress through fast Chl-a fluorescence transient showed that the damage caused due to PEG is more prominent at the donor side rather than the acceptor side of PSII. Higher PI in SIP plants under PEG stress indicated a better vitality than control plants. Overall, these results indicate that constitutive expression of SIP1 in Arabidopsis plants induces significant changes in the photosynthetic machinery under PEG-induced osmotic stress.  相似文献   

17.
Earlier, we have reported that overexpression of Malus hupehensis Non-expressor of pathogenesis related gene 1 (MhNPR1) gene in tobacco could induce the expression of pathogenesis-related genes and enhance resistance to fungus Botrytis cinerea. In this study, we showed that MhNPR1 can be induced by NaCl, PEG6000, low temperature (4 °C), abscisic acid and apple aphids’ treatments in M. hupehensis. Heterogonous expression of MhNPR1 gene in tobacco conferred enhanced resistance to NaCl at the stage of seed germination, and conferred resistance to mannitol at the stage of seed germination and to PEG6000 at the stage of seedlings. Furthermore, overexpression of MhNPR1 in transgenic tobacco led to higher expression levels of osmotic-stress related genes compared with wild-type plants. This was the first report of a novel function of NPR1 that overexpression of MhNPR1 gene has a positive effect on salt and osmotic stress in tobacco, which differs from the function that overexpressing of AtNPR1 gene has a negative effect on dehydration and salt stress in rice.  相似文献   

18.
19.
Summary Lepidopteran insects are major defoliating pests of soybean in the southeastern United States. Soybean plants transgenic for a nativecryIA(b) gene fromBacillus thuringiensis var.kurstaki HD-1 were obtained. Embryogenic cultures were induced by plating cotyledons on a Murashige and Skoog-based medium supplemented with 40 mg/liter of 2,4-dichlorophenoxyacetic acid (2,4-D). The embryogenic cultures were maintained in liquid medium containing 5 mg/liter 2,4-D. These cultures were subjected to microprojectile bombardment, followed by selection on 50 mg/liter hygromycin. Resistant embryogenic cell lines were transferred to growth regulator-free medium to permit recovery of mature somatic embryos. After a desiccation period, the somatic embryos were returned to growth regulator-free medium for conversion into plants. Southern hybridization analysis verified transformation. Feeding assays of T1 plants from one cell line deterred feeding, development, and survival of velvetbean caterpillar at a level comparable to that of GatIR81-296, a soybean breeding line with a high level of insect resistance. Reduced feeding on T1 plants correlated with the presence of the transgene.  相似文献   

20.
Molecular and genetic aspects of plant responses to osmotic stress   总被引:24,自引:0,他引:24  
Drought, high salinity and freezing impose osmotic stress on plants. Plants respond to the stress in part by modulating gene expression, which eventually leads to the restoration of cellular homeostasis, detoxification of toxins and recovery of growth. The signal transduction pathways mediating these adaptations can be dissected by combining forward and reverse genetic approaches with molecular, biochemical and physiological studies. Arabidopsis is a useful genetic model system for this purpose and its relatives including the halophyte Thellungiella halophila, can serve as valuable complementary genetic model systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号