首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Breast cancer is a molecularly heterogeneous disease, and predicting response to chemotherapy remains a major clinical challenge. To minimize adverse side-effects or cumulative toxicity in patients unlikely to benefit from treatment, biomarkers indicating treatment efficacy are critically needed. iTRAQ labeling coupled with multidimensional LC-MS/MS of the enriched mitochondria and endoplasmic reticulum fraction, key organelles regulating apoptosis, has led to the discovery of several differentially abundant proteins in breast cancer cells treated with the chemotherapeutic agent doxorubicin followed by the death receptor ligand, TRAIL, among 571 and 801 unique proteins identified in ZR-75-1 and MDA-MB-231 breast cancer cell lines, respectively. The differentially abundant proteins represent diverse biological processes associated with cellular assembly and organization, molecular transport, oxidative stress, cell motility, cell death, and cancer. Despite many differences in molecular phenotype between the two breast cancer cell lines, a comparison of their subproteomes following drug treatment revealed three proteins displaying common regulation: PPIB, AHNAK, and SLC1A5. Changes in these proteins, detected by iTRAQ, were confirmed by immunofluorescence, visualized by confocal microscopy. These novel potential biomarkers may have clinical utility for assessing response to cancer treatment and may provide insight into new therapeutic targets for breast cancer.  相似文献   

2.
Many molecular mechanisms contribute to the development of doxorubicin resistance and different cancers can express wide and diverse arrays of drug-resistance genes. The aim of this study was to identify the changes in gene expression associated with the development of doxorubicin resistance in MCF7 breast cancer cell line. The doxorubicin resistant MCF7 cell line was developed by stepwise selection of MCF7 cells and was tested using the MTT assay. The alterations in gene expression were examined using the real-time based PCR array. The findings showed an up-regulation of many phase I/II metabolizing genes, specifically, the CYP1A1 and the CYP1A2 that were up-regulated by 206- and 96-fold respectively. Drug efflux pump genes were also up-regulated profoundly. TOP2A was strongly down-regulated by 202-fold. Many other changes were observed in genes crucial for cell cycle, apoptosis and DNA repair. The findings of this project imply that the development of doxorubicin resistance is a multi-factorial process.  相似文献   

3.
While acquired chemoresistance is recognized as a key challenge to treating many types of cancer, the dynamics with which drug sensitivity changes after exposure are poorly characterized. Most chemotherapeutic regimens call for repeated dosing at regular intervals, and if drug sensitivity changes on a similar time scale then the treatment interval could be optimized to improve treatment performance. Theoretical work suggests that such optimal schedules exist, but experimental confirmation has been obstructed by the difficulty of deconvolving the simultaneous processes of death, adaptation, and regrowth taking place in cancer cell populations. Here we present a method of optimizing drug schedules in vitro through iterative application of experimentally calibrated models, and demonstrate its ability to characterize dynamic changes in sensitivity to the chemotherapeutic doxorubicin in three breast cancer cell lines subjected to treatment schedules varying in concentration, interval between pulse treatments, and number of sequential pulse treatments. Cell populations are monitored longitudinally through automated imaging for 600–800 hours, and this data is used to calibrate a family of cancer growth models, each consisting of a system of ordinary differential equations, derived from the bi-exponential model which characterizes resistant and sensitive subpopulations. We identify a model incorporating both a period of growth arrest in surviving cells and a delay in the death of chemosensitive cells which outperforms the original bi-exponential growth model in Akaike Information Criterion based model selection, and use the calibrated model to quantify the performance of each drug schedule. We find that the inter-treatment interval is a key variable in determining the performance of sequential dosing schedules and identify an optimal retreatment time for each cell line which extends regrowth time by 40%-239%, demonstrating that the time scale of changes in chemosensitivity following doxorubicin exposure allows optimization of drug scheduling by varying this inter-treatment interval.  相似文献   

4.
The radiation response of drug-resistant variants of the human tumor breast cancer cell line MCF-7 has been investigated. Two sublines, one resistant to adriamycin (ADRR) and the other to melphalan (MLNR), have been selected by exposure to stepwise increasing concentrations of the respective drugs. ADRR cells are 200-fold resistant to adriamycin and cross-resistant to a number of other drugs and are characterized by the presence of elevated levels of selenium-dependent glutathione peroxidase and glutathione-S-transferase. MLNR cells are fourfold resistant to melphalan and cross-resistant to some other drugs. The only mechanism of drug resistance established for MLNR cells to date is an enhancement of DNA excision repair processes. While the spectrum of drug resistance and the underlying mechanisms differ for the two sublines, their response to radiation is qualitatively similar. Radiation survival curves for ADRR and MLNR cells differ from that for wild-type cells in a complex manner with, for the linear-quadratic model, a decrease in the size of alpha and an increase in the size of beta. There is a concomitant decrease in the size of the alpha/beta ratio which is greater for ADRR cells than for MLNR cells. Analysis of results using the multitarget model gave values of D0 of 1.48, 1.43, and 1.67 Gy for MCF-7 cells are not a consequence of cell kinetic differences between these sublines. Results of split-dose experiments indicated that for both drug-resistant sublines the extent of sublethal damage repair reflected the width of the shoulder on the single-dose survival curve. For MCF-7 cells in the stationary phase of growth, the drug-resistant sublines did not show cross-resistance to radiation; however, delayed subculture following irradiation of stationary-phase cultures increased survival to a greater extent for ADRR and MLNR cells than for wild-type cells.  相似文献   

5.
Breast cancer patients have different responses to chemotherapeutic treatments. Genes associated with drug response can provide insight to understand the mechanisms of drug resistance, identify promising therapeutic opportunities, and facilitate personalized treatment. Estrogen receptor (ER) positive and ER negative breast cancer have distinct clinical behavior and molecular properties. However, to date, few studies have rigorously assessed drug response genes in them. In this study, our goal was to systematically identify genes associated with multidrug response in ER positive and ER negative breast cancer cell lines. We tested 27 human breast cell lines for response to seven chemotherapeutic agents (cyclophosphamide, docetaxel, doxorubicin, epirubicin, fluorouracil, gemcitabine, and paclitaxel). We integrated publicly available gene expression profiles of these cell lines with their in vitro drug response patterns, then applied meta-analysis to identify genes related to multidrug response in ER positive and ER negative cells separately. One hundred eighty-eight genes were identified as related to multidrug response in ER positive and 32 genes in ER negative breast cell lines. Of these, only three genes (DBI, TOP2A, and PMVK) were common to both cell types. TOP2A was positively associated with drug response, and DBI was negatively associated with drug response. Interestingly, PMVK was positively associated with drug response in ER positive cells and negatively in ER negative cells. Functional analysis showed that while cell cycle affects drug response in both ER positive and negative cells, most biological processes that are involved in drug response are distinct. A number of signaling pathways that are uniquely enriched in ER positive cells have complex cross talk with ER signaling, while in ER negative cells, enriched pathways are related to metabolic functions. Taken together, our analysis indicates that distinct mechanisms are involved in multidrug response in ER positive and ER negative breast cells.  相似文献   

6.
7.
Alpha-fetoprotein receptors in a human breast cancer cell line   总被引:2,自引:0,他引:2  
Evidence is presented for the existence of specific receptors for alpha-fetoprotein on the surface of MCF-7 human breast cancer cells. At 4 degrees C, the binding of alpha-fetoprotein to these cells displayed a biphasic saturation curve. Scatchard analysis revealed the presence of at least two binding sites with dissociation constants of 4.5 X 10(-9) M (2,000 sites/cell) and 1.3 X 10(-8) M (135,000 sites/cell), respectively. Binding was inhibited by 85% in the presence of a 5,000-fold excess of unlabeled alpha-fetoprotein and by 50% with the same excess of serum albumin. Competition by other serum proteins was not significant. At 37 degrees C, alpha-fetoprotein was endocytosed and the uptake curve reached a plateau after 3-4 hours of incubation.  相似文献   

8.
BackgroundThe outcome of triple negative breast cancer is still poor and requires improvement with better therapy options. Autophagy has recently been shown to play a role in anticancer drug resistance. Therefore, we investigated if the effectiveness of doxorubicin was augmented by the inhibition of autophagy.MethodsMDA-MB-231 was used as a model cell line for triple negative breast cancer and 3-methyladenine was used as an inhibitor of autophagy. Cells were treated with 0.46–1.84 μM doxorubicin and 2.5–10 μM 3-methyladenine for 48 h. Cell death mode was examined with M30 and M65 ELISA assays. ROS level and LDH activity was examined and the cellular acidic compartment of cells was monitored by acridine orange staining. The expression of various autophagy and apoptosis related proteins/genes were evaluated with Western blotting and RT-qPCR respectively.ResultsSynergism was observed between the compounds (CI value < 1.0). RT-qPCR analysis revealed that the combination resulted in a down-regulation of autophagy-related genes. Moreover, the combination resulted in a different cell death modality, upregulating necroptosis-related genes. This suggests that the mode of cell death may switch from apoptosis to necroptosis, which is a more severe form of cell death, when autophagy is inhibited. These results were further confirmed at protein level by Western blotting.ConclusionInhibition of autophagy seems to sensitize triple negative breast cancer cells to doxorubicin, warranting further in vivo studies for the proof of this concept.General significanceAutophagy has a key role in drug resistance in MDA-MB-231 cells. Therefore combinatorial approaches may effectively overcome resistance.  相似文献   

9.
The unravelling of the complexity of cellular metabolism is in its infancy. Cancer‐associated genetic alterations may result in changes to cellular metabolism that aid in understanding phenotypic changes, reveal detectable metabolic signatures, or elucidate vulnerabilities to particular drugs. To understand cancer‐associated metabolic transformation, we performed untargeted metabolite analysis of 173 different cancer cell lines from 11 different tissues under constant conditions for 1,099 different species using mass spectrometry (MS). We correlate known cancer‐associated mutations and gene expression programs with metabolic signatures, generating novel associations of known metabolic pathways with known cancer drivers. We show that metabolic activity correlates with drug sensitivity and use metabolic activity to predict drug response and synergy. Finally, we study the metabolic heterogeneity of cancer mutations across tissues, and find that genes exhibit a range of context specific, and more general metabolic control.  相似文献   

10.
The multidrug resistance (MDR) phenotype, frequently observed during cancer treatment, is often associated with drug efflux pump activity. However, many other factors are also known to be involved. Cancer cells often rely on aerobic glycolysis for energy production; this is known as the “Warburg effect” and is used as a survival mechanism. Associated to this event, a reverse pH gradient across the cell membrane occurs, leading to cytosol alkalinization and extracellular acidification. In the present study, we investigated the role of different mechanisms involved in MDR, such as altered tumor microenvironment and energetic metabolism. The breast cancer cell line MCF-7, used as model, was exposed to two widely used antitumor drugs, paclitaxel (antimitotic agent) and doxorubicin (alkylating agent). Cancer pH regulation was shown to be crucial for malignant characteristics such as cell migration and drug resistance. Our results showed that a lower extracellular pH induced a higher migratory capacity and higher resistance to the studied chemotherapeutical compounds in MCF-7 cells. Besides the influence of the extracellular pH, the role of the tumor metabolism in the MDR phenotype was also investigated. Pre-treatment with different bioenergetic modulators led to cell ATP depletion and altered lactic acid production and glucose consumption, resulting in increased sensitivity to paclitaxel and doxorubicin. Overall, this study supports the potential use of compounds targeting cell metabolism and tumor microenvironment factors such as pH, as co-adjuvants in conventional chemotherapy.  相似文献   

11.
In the human breast carcinoma cell line MDA-468 addition of epidermal growth factor (EGF) is growth inhibitory. Calcium signalling was investigated in this cell line using the calcium sensitive fluorescent probe Indo-1. Addition of EGF to MDA-468 cells resulted in a novel biphasic calcium response. In the first phase of the response EGF raised calcium to levels significantly above basal. This was followed by a prolonged fall in calcium to levels significantly lower than original basal levels. The G-protein activator aluminum fluoride (AlF), stimulated a rise in calcium which was not proceeded by a fall below basal levels. Conversely addition of PMA, an activator of protein kinase C (PKC), induced a fall in calcium from basal without a prior increase. Down regulation of PKC eliminated the response to PMA, however the biphasic nature of the EGF response was maintained. Pretreatment of the cells with pertussis toxin did not alter the response to EGF nor to AlF. We conclude that in the MDA-468 cell in which EGF is growth inhibitory: 1) EGF results in a biphasic calcium response which ultimately leads to reduction below baseline levels, 2) a rise in calcium itself is not sufficient to account for the subsequent fall below basal levels, 3) G-proteins may be involved in the initial phase of the EGF response, 4) activation of PKC can also reduce intracellular calcium, however the response to EGF is not dependent on this pathway.  相似文献   

12.
Activated phagocytes employ myeloperoxidase to generate glycolaldehyde, 2-hydroxypropanal, and acrolein. Because alpha-hydroxy and alpha,beta-unsaturated aldehydes are highly reactive, phagocyte-mediated formation of these products may play a role in killing bacteria and tumor cells. Using breast cancer cells, we demonstrate that glycolaldehyde inactivates glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and Cu,Zn superoxide dismutase, suppresses cell growth, and induces apoptosis. These results suggest that glycolaldehyde might be an important mediator of neutrophil anti-tumor activity.  相似文献   

13.
Kodym, E., Kodym, R., Choy, H. and Saha, D. Sustained Metaphase Arrest in Response to Ionizing Radiation in a Non-small Cell Lung Cancer Cell Line. Radiat. Res. 169, 46-58 (2008). In solid tumors, non-apoptotic forms of tumor cell inactivation such as mitotic catastrophe appear to be predominant in the response to DNA-damaging agents. Despite its importance, the underlying molecular mechanisms of mitotic catastrophe have been only partially elucidated. We found that a large fraction of HCC2279 non-small cell lung cancer cells underwent mitotic catastrophe after irradiation. Cells were arrested in metaphase with chromosomal damage indicated by DNA fragments displaced from the metaphase plate and considerable numbers of residual gamma-H2AX foci. Although TP53 was nonfunctional, we detected a prompt radiation response on the level of checkpoint kinases. In contrast, CDC25A was the only checkpoint phosphatase that was responsive to radiation. CDC25B was not detectable, and CDC25C was constitutively phosphorylated at serine 216, leading to its cytoplasmic sequestration and functional inactivation. Therefore, radiation-induced mitotic catastrophe in HCC2279 cells appears to be induced by a combination of relative insufficiencies in the p53-mediated and checkpoint kinase-mediated pathways leading to premature entry into mitosis. Displaced chromosome fragments triggering an intra-M checkpoint in cells entering mitosis presumably result in a sustained metaphase arrest. The phenomenon found in these cells, which were derived directly from a human patient, might be responsible for therapy-induced genetic instability of tumors.  相似文献   

14.
C-reactive protein (CRP) is one of the most important biomarker for cardiovascular diseases. Recent studies have shown that CRP affects cell survival, differentiation and apoptosis. However, the effect of CRP on the cell cycle has not been studied yet. We investigated the cell cycle alterations and cellular mechanisms induced by CRP in H9c2 cardiac myocytes. Flow cytometry analysis showed that CRP-treated H9c2 cells displayed cell cycle arrest in G0/G1 phase. CRP treatment resulted in a significant reduction in the levels of CDK4, CDK6 and cyclin D1 in a concentration-dependent manner. Interestingly, CRP caused an increase in the p53 accumulation and its phosphorylation on Ser15, leading to induce p21 upregulation. Treatment with a specific p53 inhibitor, PFT-α restored the levels of CDK4 and CDK6. A significant increase of ERK1/2 phosphorylation level was detected in CRP-treated cells. Furthermore, pretreatment of a specific ERK inhibitor resulted in decreased p53 phosphorylation and p21 induction. ERK inhibitor pretreatment induced significant restoration of protein levels of CDK4 and CDK6, leading to re-entry into the cell cycle. In addition, increased phosphorylation of p53 and ERK induced by CRP was considerably reversed by Fc gamma receptor IIIa (FcγRIIIa) knock-down using siRNA. FcγRIIIa siRNA transfection also restored the levels of cell cycle proteins. Our study has provided the first proposal on the novel insights into how CRP directly affects cell cycle in cells.  相似文献   

15.
In the evolution of cancer, tumor necrosis factor-alpha (TNF-α) plays a paradoxical role. High doses induce significant anticancer effects, but conversely, physiologic and pathologic levels of TNF-α may be involved in cancer promotion, tumor growth, and metastasis.Infliximab is a chimeric murine monoclonal antibody that binds with high affinity to soluble and membrane TNF-α and inhibits binding of TNF-α to its receptors. In the present study, we investigated the effect of infliximab, a TNF-α antagonist, on breast cancer aggressiveness and bone metastases.Infliximab greatly reduced cell motility and bone metastases in a metastatic breast cancer cell line, MDA-MB-231. The mechanism of bone metastasis inhibition involved decreased expression of CXC chemokine receptor 4 (CXCR4) and increased expression of decorin, which is the prototype of an expanding family of small leucine-rich proteoglycans. These results suggest a novel role for TNF-α inhibition in the reduction or prevention of bone metastases in this breast cancer model. Our study suggests that inhibition of TNF-α using infliximab may become a preventive therapeutic option for breast cancer.  相似文献   

16.
Du WW  Yang BB  Yang BL  Deng Z  Fang L  Shan SW  Jeyapalan Z  Zhang Y  Seth A  Yee AJ 《PloS one》2011,6(11):e26396
Overexpression of EGFR and versican has been reported in association with breast cancers. Considered oncogenic, these molecules may be attractive therapeutic targets. Possessing anti-apoptotic and drug resistant properties, overexpression of these molecules is accompanied by selective sensitization to the process of apoptosis. In this study, we exogenously expressed a versican G3 construct in breast cancer cell lines and analyzed the effects of G3 on cell viability in fetal bovine serum free conditioned media and evaluated the effects of apoptotic agent C2-ceramide, and chemotherapeutic agents including Docetaxel, Doxorubicin, and Epirubicin. Versican G3 domain enhanced tumor cell resistance to apoptosis when cultured in serum free medium, Doxorubicin, or Epirubicin by up-regulating pERK and GSK-3β (S9P). However, it could be prevented by selective EGFR inhibitor AG 1478 and selective MEK inhibitor PD 98059. Both AG 1478 and PD 98059 enhanced expression of pSAPK/JNK, while selective JNK inhibitor SP 600125 enhanced expression of GSK-3β (S9P). Versican G3 promoted cell apoptosis induced by C2-ceramide or Docetaxel by enhancing expression of pSAPK/JNK and decreasing expression of GSK-3β (S9P), an observation blocked by AG 1478 or SP 6000125. Inhibition of endogenous versican expression by siRNA or reduction of versican G3's expression by linking G3 with 3'UTR prevented G3 modulated cell apoptosis. The dual roles of G3 in modulating breast cancer cell resistance to chemotherapeutic agents may in part explain a potential mechanism for breast cancer cell resistance to chemotherapy and EGFR therapy. The apoptotic effects of chemotherapeutics depend upon the activation and balance of down stream signals in the EGFR pathway. GSK-3β (S9P) appears to function as a key checkpoint in this balance of apoptosis and anti-apoptosis. Investigation and potential consideration of targeting GSK-3β (S9P) merits further study.  相似文献   

17.
Two drug-resistant variants of the human breast cancer cell line MCF-7 have been shown previously to exhibit radiation resistance associated with an increase in the size of the shoulder on the radiation survival curve. In the present study, glutathione (GSH) depletion was achieved by exposure of cells to buthionine sulfoximine (BSO) with, in some cases, additional treatment with dimethyl fumarate. Levels of GSH in the adriamycin-resistant subline MCF-7 ADRR are initially lower than in the other two sublines and are depleted to a greater extent by exposure to BSO. Wild-type MCF-7 cells are not sensitized by GSH depletion when irradiated under aerated conditions but are sensitized under hypoxic conditions to an extent which is related to the level of GSH depletion. In contrast both the drug-resistant sublines (MCF-7 ADRR and the melphalan-resistant line MCF-7 MLNR) are radiosensitized by GSH depletion under both aerated and hypoxic conditions. It is hypothesized that in the case of the MCF-7 ADRR cell line, which expresses high levels of the GSH-associated redox enzyme systems, GSH-S-transferase and GSH-peroxidase (GSH-Px), radiosensitization results when GSH-Px is inhibited in GSH-depleted cells. The reasons for radiosensitization of aerated MCF-7 MLNR cells cannot be explained on this basis, however, and other factors are being examined.  相似文献   

18.
Lack of effective treatments for aggressive breast cancer is still a major global health problem. We have previously reported that photodynamic therapy using methylene blue as photosensitizer (MB-PDT) massively kills metastatic human breast cancer, marginally affecting healthy cells. In this study, we aimed to unveil the molecular mechanisms behind MB-PDT effectiveness and specificity towards tumor cells. Through lipidomics and biochemical approaches, we demonstrated that MB-PDT efficiency and specificity rely on polyunsaturated fatty acid-enriched membranes and on the better capacity to deal with photo-oxidative damage displayed by non-tumorigenic cells. We found out that, in tumorigenic cells, lysosome membrane permeabilization is accompanied by ferroptosis and/or necroptosis. Our results also pointed at a cross-talk between lysosome-dependent cell death (LDCD) and necroptosis induction after photo-oxidation, and contributed to broaden the understanding of MB-PDT-induced mechanisms and specificity in breast cancer cells. Therefore, we demonstrated that efficient approaches could be designed on the basis of lipid composition and metabolic features for hard-to-treat cancers. The results further reinforce MB-PDT as a therapeutic strategy for highly aggressive human breast cancer cells.Subject terms: Lipidomics, Necroptosis, Stress signalling, Breast cancer  相似文献   

19.
An Adriamycin-resistant subline of a human breast cancer cell line, MCF-7 ADRR, has been shown to exhibit radioresistance associated with an increase in the size of the shoulder on the radiation survival curve. In the present study, damage to DNA of MCF-7 sublines WT and ADRR by 60Co gamma radiation was measured by filter elution techniques. The initial amount of DNA damage, measured by both alkaline and neutral filter elution, was lower in ADRR cells, suggesting that these cells are resistant to radiation-induced single- and double-strand DNA breaks. In the case of double-strand breaks the difference between WT and ADRR cells was significant only at the lower radiation doses studied (up to 100 Gy). In cells depleted of glutathione (GSH) by L-buthionine sulfoximine (BSO) treatment, ADRR cells were sensitized to radiation-induced DNA damage, while WT cells were unaffected. The rate of repair of single- and double-strand DNA breaks following radiation was the same for both sublines, and repair of radiation damage was not affected by BSO treatment in either cell line. The relative resistance of ADRR cells to initial DNA damage by radiation is the only difference so far detected at the molecular level which reflects radiation survival, and it is possible that other factors are involved in the resistance of ADRR cells to killing by radiation. Sensitization of ADRR cells to radiation-induced DNA damage by GSH depletion, although not likely to involve inhibition of GSH-dependent detoxification enzymes per se (irradiation was done at 4 degrees C), suggests that at the molecular level radioresponse in this subline is related to maintenance of GSH/GSSG redox equilibrium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号