首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases). In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7). A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7) were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2) and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi). Similarly, this procedure reduced the number of female adults at 40 dpi, which suggests the important roles of this gene in the early stages of parasitism. Our combined data suggest that two types of pectate lyases are present in the H. glycines genome and may have different roles during infection.  相似文献   

2.
3.
4.
Chitin synthases are critical enzymes for synthesis of chitin and thus for subsequent growth and development in insects. We identified the cDNA of chitin synthase gene (CHS) in Aphis glycines, the soybean aphid, which is a serious pest of soybean. The full-length cDNA of CHS in A. glycines (AyCHS) was 5802 bp long with an open reading frame of 4704 bp that encoded for a 1567 amino acid residues protein. The predicted AyCHS protein had a molecular mass of 180.05 kDa and its amino acid sequence contained all the signature motifs (EDR, QRRRW and TWGTR) of chitin synthases. The quantitative real-time PCR (qPCR) analysis revealed that AyCHS was expressed in all major tissues (gut, fat body and integument); however, it had the highest expression in integument (~3.5 fold compared to gut). Interestingly, the expression of AyCHS in developing embryos was nearly 7 fold higher compared to adult integument, which probably is a reflection of embryonic molts in hemimetabolus insects. Expression analysis in different developmental stages of A. glycines revealed a consistent AyCHS expression in all stages. Further, through leaf dip bioassay, we tested the effect of diflubenzuron (DFB, Dimilin ®), a chitin-synthesis inhibitor, on A. glycines'' survival, fecundity and body weight. When fed with soybean leaves previously dipped in 50 ppm DFB solution, A. glycines nymphs suffered significantly higher mortality compared to control. A. glycines nymphs feeding on diflubenzuron treated leaves showed a slightly enhanced expression (1.67 fold) of AyCHS compared to nymphs on untreated leaves. We discussed the potential applications of the current study to develop novel management strategies using chitin-synthesis inhibitors and using RNAi by knocking down AyCHS expression.  相似文献   

5.
6.
Pectate lyase (EC 4.2.2.2) is an enzyme involved in the maceration and soft rotting of plant tissue via degradation of cell wall in organisms. Plants as well as bacteria and fungi are capable of producing pectate lyases. Here we report the cloning of a novel full-length cDNA of pectate lyase gene, designated BPL1, from Brassica napus by rapid amplification of cDNA ends. BPL1 cDNA is 1787 bp containing a 1503 bp ORF encoding a 500 amino acid protein precursor. The protein precursor has a potential signal peptide with 22 amino acids. Alignment of sequences shows that there are some extremely conserved amino acids among pectate lyase-like proteins from different plant species, and novel C-terminal domains are found in Arabidopsis and Brassica. Phylogenetic analysis of 50 pectate lyase-like proteins from various species demonstrates the obvious distinction among pectate lyase-like proteins from plants, bacteria and fungi, which are subsequently clustered into three groups. The cloning of BPL1 enables us to explore its diverse roles in higher plants and potential application in crop improvement.  相似文献   

7.
Secretory proteins encoded by genes expressed in the oesophageal gland cells of plant-parasitic nematodes have key roles in nematode parasitism of plants. Two venom allergen-like protein cDNAs (designated hg-vap-1 and hg-vap-2)were isolated from Heterodera glycines gland cell cDNA libraries. Both cDNAs hybridised to genomic DNA of H. glycines in Southern blots. The hg-vap-1 cDNA contained an open reading frame encoding 215 amino acids with the first 25 amino acids being a putative secretion signal. The hg-vap-2 cDNA contained an open reading frame encoding 212 amino acids with the first 19 amino acids being a putative secretion signal. Genes of hg-vap-1 and hg-vap-2 contained four introns, which ranged in size from 44 to 574 bp, and five exons ranging in size from 43 to 279 bp. In situ hybridisation analyses showed that mRNAs of both vap genes accumulated specifically in the subventral gland cells of H. glycines during parasitism. The gland cell-specific expression and presence of predicted secretion signal peptides in both VAPs suggest that these proteins are secreted from the nematode and may play a role in the infection of host plants by this parasite.  相似文献   

8.
Sudden death syndrome of soybean (Glycine max) is caused by the soilborne fungus, Fusarium solani f. sp. glycines, that infects soybean roots. Besides root necrosis, symptoms include interveinal leaf chlorosis, necrosis and premature defoliation. It is proposed that a fungal toxin is produced in soybean roots and translocated to foliage. In this study, we isolated compounds from soybean stem exudates from plants that were either inoculated or not inoculated with F. solani f. sp. glycines. A protein with an estimated molecular mass of 17 kDa and designated as FISP 17 for F. solani f. sp. glycines-induced stress protein was identified using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein occurred only in F. solani f. sp. glycines-infected soybean stem exudates. The N-terminal amino acid sequence of the purified protein had 100 % identity with a starvation-associated message 22 protein, and 80 and 78 % identity with purified bean pathogenesis-related proteins, PvPR1 and PvPR2, respectively. To determine if the protein was of plant or fungal origin, a synthetic peptide was designed based on the N-terminal sequence and used to raise a polyclonal antibody from rabbit. Western blot analysis showed that the antibody only reacted with a 17-kDa protein in F. solani f. sp. glycines-infected plant exudates, but no reaction occurred with healthy plant exudates or with culture filtrates of F. solani f. sp. glycines. This is the first report of the presence of a stress-induced protein in stem exudates of soybean seedlings root-infected with F. solani f. sp. glycines.  相似文献   

9.
Fructose-bisphosphate aldolase (EC 4.1.2.13) is a key enzyme in glycolysis. We have characterized full-length coding sequences for aldolase genes from the cyst nematodes Heterodera glycines and Globodera rostochiensis, the first for any plant-parasitic nematode. Nucleotide homology is high (83% identity), and the respective sequences encode 40 kDa proteins with 89% amino acid identity. Genomic sequences contain six introns located at identical positions in both genes. Intron 4 in the H. glycines gene is >500 bp. Partial genomic sequences determined for seven other cyst nematode species reveal that the large fourth intron is characteristic of Heterodera but not Globodera aldolase genes. Total aldolase-like specific activity in homogenates from H. glycines was 2-fold lower than in either Caenorhabditis elegans or Panagrellus redivivus (P = 0.001). Activity in H. glycines samples was higher in juvenile stages than in adults (P = 0.003). Heterodera glycines aldolase has Km = 41 µM and is inhibited by treatment with carboxypeptidase A or sodium borohydride.  相似文献   

10.
11.
Amino acids emitted and extracted from surface-sterilized larvae and adults of Heterodera glycines were identified by paper chromatography and quantitatively analyzed by column chromatography. Five amino acids (alanine, aspartic acid, glutamic acid, glycine and serine) were emitted by H. glycines larvae and eight others (asparagine, glutamine, leucine/isoleucine, lysine, methionine sulfoxide, threonine, tyrosine, valine/methionine) were found in extracts from crushed larvae.In addition to the amino acids emitted or extracted from larvae, four others were emitted by adults (γ-aminobutyric acid, histidine, phenylalanine, and proline). Four different amino acids (arginine, cystathionine, hydroxyproline, and ornithine) were found only in the extract from crushed adults. Greater quantities of alanine, aspartic acid and glycine were emitted than could be detected in nematode extracts suggesting selective emission.Subsamples of nematode populations were taken from growing plants 19, 26, 33, and 40 days after inoculation and extracted to determine whether changes in specific amino acid content correlated with aging. Proline content shifted most, increasing from 4.1% to 21.5% of the total amino acid complement from the 19th to the 40th days.  相似文献   

12.
The soybean cyst nematode (Heterodera glycines) and the closely related sugar beet cyst nematode (Heterodera schachtii) are devastating pathogens of plant roots that use secreted effector proteins to engage in sophisticated host-parasite interactions. While H. schachtii infects and reproduces readily on the roots of Arabidopsis thaliana, H. glycines rarely is able to infect this model plant. The molecular basis for differing host ranges remains obscure but likely involves differences between nematode effector proteins and the recognition of host factors. Recently we reported that constitutive expression of the H. schachtii 10A06 effector protein gene (Hs-10A06) in Arabidopsis affected plant morphology and increased susceptibility to H. schachtii and that the 10A06 protein functions through its interaction with Arabidopsis spermidine synthase 2 (SPDS2). Therefore, we investigated whether differences between cyst nematode effector protein orthologs in two nematode species have a role in mediating host specificity. Here, we show that, similar to Hs-10A06, ectopic expression of H. glycines 10A06 (Hg-10A06) in Arabidopsis affected leaf number and root length, however, to a much lesser extent. More importantly, no effect of Hg-10A06 overexpression on Arabidopsis susceptibility to H. schachtii was observed. While we found that Hg-10A06 can weakly interact with Arabidopsis SPDS2 in yeast-two hybrid assays, this ability to interact with SPDS2 was decreased approximately five-fold compared with Hs-10A06. Collectively, these data suggest that sequence divergence between cyst nematode effector protein orthologs could contribute in determining cyst nematode host range.Key words: Heterodera schachtii, arabidopsis, 10A06 effector protein, spermidine synthase 2Cyst nematodes are sedentary pathogens of roots of many economically important crop plants and induce the formation of specialized feeding cells, so-called syncytia, that provide the nematodes with nourishment. The infection process is mediated through secretion of an array of nematode effector proteins inside plant tissues and cells. One of these effector proteins is 10A06, which was initially identified from a gland cell cDNA library from H. glycines, the soybean cyst nematode.1 The 927 bp full-length H. glycines Hg-10A06 cDNA (GenBank Accession AF502391) encoded a predicted protein of 308 amino acids with an N-terminal signal peptide of 17 amino acids for secretion. Recently, we identified the orthologous 10A06 sequence from the sugar beet cyst nematode H. schachtii (Hs-10A06), which is able to infect the model plant Arabidopsis thaliana. The Hs-10A06 cDNA (GenBank Accession GQ373256) contained an open reading frame of 858 bp encoding a 285-amino acid protein with an N-terminal signal peptide for secretion.2 Sequence alignment of H. glycines and H. schachtii 10A06 proteins revealed a strong homology between both orthologues with 86% identity and 87% similarity. The largest difference between the two proteins is the lack of a stretch of 23 amino acids in Hs-10A06. Additionally, a region of 15 amino acid residues located between amino acid 167 and 181 exhibited a high degree of divergence between both proteins. Constitutive expression of Hs-10A06 in Arabidopsis affected plant morphology and increased susceptibility to H. schachtii.2 We uncovered in yeast two-hybrid assays that the Hs-10A06 protein interacts with Arabidopsis SPDS2, a key enzyme involved in polyamine biosynthesis, to mediate susceptibility. Here, we assessed the effects of ectopic Hg-10A06 expression in the non-host Arabidopsis on plant morphology and nematode susceptibility. Moreover, we assayed whether Hg-10A06 also is able to interact with SPDS2 from Arabidopsis.  相似文献   

13.
In Caenorhabditis elegans the unc-87 gene encodes a protein that binds to actin at the I band and is important in nematodes for maintenance of the body-wall muscle. Caenorhabditis elegans mutant phenotypes of unc-87 exhibit severe paralysis in larvae and limp paralysis in the adult. We cloned and characterized a full-length cDNA representing a Heterodera glycines homolog of the unc-87 gene from C. elegans that encodes a protein that contains a region of seven repeats similar to CLIK-23 from C-elegans and has 81% amino acid identity with that of C. elegans unc-87 variant A. In the EST database clones labeled "unc-87'''' encode mainly the 3'' portion of unc-87, while clones labeled "calponin homolog OV9M'''' contain mainly DNA sequence representing the 5'' and middle transcribed regions of unc-87. A 1770 nucleotide cDNA encoding H. glycines unc-87 was cloned and encodes a predicted UNC-87 protein product of 375 amino acids. The expression of unc-87 was determined using RT-PCR and, in comparison to its expression in eggs, unc-87 was expressed 6-fold higher in J2 juveniles and 20-fold and 13-fold (P = 0.05) higher in nematodes 15 and 30 days after inoculation, respectively. In situ hybridization patterns confirmed the expression patterns observed with RT-PCR.  相似文献   

14.
The soybean cyst nematode (Heterodera glycines) is an obligate parasite of soybean (Glycine max). It is the most destructive pathogen of G. max, accounting for approximately 0.46–0.82 billion dollars in crop losses, annually, in the U.S. Part of the infection process involves H. glycines establishing feeding sites (syncytia) that it derives its nourishment from throughout its lifecycle. Microscopic methods (i.e., laser capture microdissection [LCM]) that faithfully dissect out those feeding sites are important improvements to the study of this significant plant pathogen. Our isolation of developing feeding sites during an incompatible or a compatible reaction is providing new ways by which this important plant-pathogen interaction can be studied. We have used these methods to create cDNA libraries, clone genes and perform microarray analyses. Importantly, it is providing insight not only into how the root is responding at the organ level to H. glycines, but also how the syncytium is responding during its maturation into a functional feeding site.Key words: soybean, Glycine max, soybean cyst nematode, SCN, Heterodera glycines, microarray, gene expression, plant pathogen, parasite, laser capture microdissection  相似文献   

15.
Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27–52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females) and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.  相似文献   

16.
Aps-1 encodes acid phosphatase-1, one of the many acid phosphatases present in tomato (Lycopersicon esculentum Mill.). Aps-1 is closely linked to Mi, a gene conferring resistance against nematodes. Thus, a clone of Aps-1 would provide access to the region of the genome containing Mi. Acid phosphatase-1 was purified from tomato suspension culture cells. Fragmentary amino acid sequences were derived from the purified protein and from its proteolytic and chemical digestion products. One of these amino acid sequences was used to design an oligodeoxyribonucleotide probe expected to hybridize to acid phosphatase-1 cDNA. This probe identified, in a cDNA library, a clone encoding the carboxyl-terminal sequence of a protein that is very similar, but not identical, to acid phosphatase-1. Using this clone, we discovered a second cDNA clone that corresponds in its carboxyl terminal sequence to acid phosphatase-1 but, surprisingly, retains sequences of an Aps-1 intron. The second cDNA clone was used to detect both a cDNA clone and a genomic clone corresponding to Aps-1. The identity of these clones was confirmed by sequence analysis and by the correlation of a restriction fragment length polymorphism with two Aps-1 alleles in a segregating tomato population. The deduced amino acid sequence of the Aps-1 open reading frame predicts a hydrophobic animoterminal signal sequence and a mature protein with a molecular weight of 25,000. The amino acid sequence of this protein has a strong similarity in size and sequence to a vegetative storage protein of soybean.  相似文献   

17.
A cDNA clone for phenylalanine ammonia-lyase (PAL) induced in wounded sweet potato (Ipomoea batatas Lam.) root was obtained by immunoscreening a cDNA library. The protein produced in Escherichia coli cells containing the plasmid pPAL02 was indistinguishable from sweet potato PAL as judged by Ouchterlony double diffusion assays. The Mr of its subunit was 77,000. The cells converted [14C]-l-phenylalanine into [14C]-t-cinnamic acid and PAL activity was detected in the homogenate of the cells. The activity was dependent on the presence of the pPAL02 plasmid DNA. The nucleotide sequence of the cDNA contained a 2121-base pair (bp) open-reading frame capable of coding for a polypeptide with 707 amino acids (Mr 77, 137), a 22-bp 5′-noncoding region and a 207-bp 3′-noncoding region. The results suggest that the insert DNA fully encoded the amino acid sequence for sweet potato PAL that is induced by wounding. Comparison of the deduced amino acid sequence with that of a PAL cDNA fragment from Phaseolus vulgaris revealed 78.9% homology. The sequence from amino acid residues 258 to 494 was highly conserved, showing 90.7% homology.  相似文献   

18.
A mutant strain of the fungus Verticillium lecanii and selected bioregulators of Heterodera glycines were evaluated for their potential to reduce population densities of the nematode on soybean under greenhouse conditions. The bioregulators tested were the H. glycines sex pheromone vanillic acid and the pheromone analogs syringic acid, isovanillic acid, ferulic acid, 4-hydroxy-3-methoxybenzonitrile, and methyl vanillate. A V. lecanii-vanillic acid combination and a V. lecanii-syringic acid combination were also applied as treatments. Syringic acid, 4-hydroxy-3-methoxybenzonitrile, V. lecanii, V. lecanii-vanillic acid, and V. lecanii-syringic acid significantly reduced nematode population densities in the greenhouse tests. Results with vanillic acid, isovanillic acid, and ferulic acid treatments were variable. Methyl vanillate did not significantly reduce cyst nematode population densities in the greenhouse tests.  相似文献   

19.
Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide.  相似文献   

20.
Root diffusate from soybean plants caused greater hatching of Heterodera glycines eggs during vegetative growth of the host, but the activity declined with plant senescence. Chelation of the root diffusate with ethylenediamine tetraacetic acid (EDTA) significantly increased hatching activity for H. glycines eggs. Diffusate from leafless plants caused little hatching, whereas treatment of intact plants with the growth regulators gibberellin and kinetin had no effect on the hatching activity of root diffusate. Treating H. glycines eggs with zinc chloride and root diffusate reduced egg hatching from zinc chloride alone. Levels of zinc in the root diffusate were insufficient to induce egg hatch, based on analysis by atomic absorption spectrophotometry. The enzymatic activity of leucine aminopeptidase in H. glycines eggs was not altered by treatment with chelated or nonchelated root diffusate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号