首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The porcine orthologues of human chromosome HSA9q22.31 genes osteoglycin (OGN) and asporin (ASPN) were mapped to porcine chromosome SSC3 using linkage analysis and a somatic cell hybrid panel. This mapping was refined to SSC3q11 using fluorescence in situ hybridization. These results confirm the existence of a small conserved synteny group between SSC3 and HSA9. Polymorphisms were revealed in both genes, including a pentanucleotide microsatellite (SCZ003) in OGN and two single nucleotide polymorphisms (AM181682.1:g.780G>T and AM181682.1:g.825T>C) in ASPN. The two genes were included in a set of markers for quantitative trait loci (QTL) mapping on SSC3 in the Hohenheim Meishan x Piétrain F2 family. Major QTL for growth and carcass traits were centred in the ASPN-SW902 region.  相似文献   

2.
Knowing the large difference in daily feed intake (DFI) between Large White (LW) and Piétrain (PI) growing pigs, a backcross (BC) population has been set up to map QTL that could be used in marker assisted selection strategies. LW × PI boars were mated with sows from two LW lines to produce 16 sire families. A total of 717 BC progeny were fed ad libitum from 30 to 108 kg BW using single-place electronic feeders. A genome scan was conducted using genotypes for the halothane gene and 118 microsatellite markers spread on the 18 porcine autosomes. Interval mapping analyses were carried out, assuming different QTL alleles between sire families to account for within breed variability using the QTLMap software. The effects of the halothane genotype and of the dam line on the QTL effect estimates were tested. One QTL for DFI (P < 0.05 at the chromosome-wide (CW) level) and one QTL for feed conversion ratio (P < 0.01 at the CW level) were mapped to chromosomes SSC6 - probably due to the halothane alleles - and SSC7, respectively. Three putative QTL for feed intake traits were detected (P < 0.06 at the CW level) on SSC2, SSC7 and SSC9. QTL on feeding traits had effects in the range of 0.20 phenotypic s.d. The relatively low number of QTL detected for these traits suggests a large QTL allele variability within breeds and/or low effects of individual loci. Significant QTL were detected for traits related to carcass composition on chromosomes SSC6, SSC15 and SSC17, and to meat quality on chromosome SSC6 (P < 0.01 at the genome-wide level). QTL effects for body composition on SSC13 and SSC17 differed according to the LW dam line, which confirmed that QTL alleles were segregating in the LW breed. An epistatic effect involving the halothane locus and a QTL for loin weight on SSC7 was identified, the estimated substitution effects for the QTL differing by 200 g between Nn and NN individuals. The interactions between QTL alleles and genetic background or particular genes suggest further work to validate QTL segregations in the populations where marker assisted selection for the QTL would be applied.  相似文献   

3.
Pork quality is an economically important trait and one of the main selection criteria for breeding in the swine industry. In this genome-wide association study (GWAS), 455 pigs from a porcine Large White × Minzhu intercross population were genotyped using the Illumina PorcineSNP60K Beadchip, and phenotyped for intramuscular fat content (IMF), marbling, moisture, color L*, color a*, color b* and color score in the longissimus muscle (LM). Association tests between each trait and the SNPs were performed via the Genome Wide Rapid Association using the Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approach. From the Ensembl porcine database, SNP annotation was implemented using Sus scrofa Build 9. A total of 45 SNPs showed significant association with one or multiple meat quality traits. Of the 45 SNPs, 36 were located on SSC12. These significantly associated SNPs aligned to or were in close approximation to previously reported quantitative trait loci (QTL) and some were located within introns of previously reported candidate genes. Two haplotype blocks ASGA0100525-ASGA0055225-ALGA0067099-MARC0004712-DIAS0000861, and ASGA0085522-H3GA0056170 were detected in the significant region. The first block contained the genes MYH1, MYH2 and MYH4. A SNP (ASGA0094812) within an intron of the USP43 gene was significantly associated with five meat quality traits. The present results effectively narrowed down the associated regions compared to previous QTL studies and revealed haplotypes and candidate genes on SSC12 for meat quality traits in pigs.  相似文献   

4.
Ai H  Ren J  Zhang Z  Ma J  Guo Y  Yang B  Huang L 《Animal genetics》2012,43(4):383-391
Growth and fatness are economically important traits in pigs. In this study, a genome scan was performed to detect quantitative trait loci (QTL) for 14 growth and fatness traits related to body weight, backfat thickness and fat weight in a large-scale White Duroc × Erhualian F(2) intercross. A total of 76 genome-wide significant QTL were mapped to 16 chromosomes. The most significant QTL was found on pig chromosome (SSC) 7 for fatness with unexpectedly small confidence intervals of ~2 cM, providing an excellent starting point to identify causal variants. Common QTL for both fatness and growth traits were found on SSC4, 5, 7 and 8, and shared QTL for fat deposition were detected on SSC1, 2 and X. Time-series analysis of QTL for body weight at six growth stages revealed the continuously significant effects of the QTL on SSC4 at the fattening period and the temporal-specific expression of the QTL on SSC7 at the foetus and fattening stages. For fatness traits, Chinese Erhualian alleles were associated with increased fat deposition except that at the major QTL on SSC7. For growth traits, most of White Duroc alleles enhanced growth rates except for those at three significant QTL on SSC6, 7 and 9. The results confirmed many previously reported QTL and also detected novel QTL, revealing the complexity of the genetic basis of growth and fatness in pigs.  相似文献   

5.
Gestation length and maternal ability are important to improve the sow reproduction efficiency and their offspring survival. To map quantitative trait loci (QTL) for gestation length and maternal ability related traits including piglet survival rate and average body weight of piglets at weaning, more than 200 F2 sows from a White Duroc × Erhualian resource population were phenotyped. A genome-wide scan was performed with 194 microsatellite markers covering the whole pig genome. QTL analysis was carried out using a composite regression interval mapping method via QTL express. The results showed that total number of born piglets was significantly correlated with gestation length (r = -0.13, P < 0.05). Three QTL were detected on pig chromosome (SSC)2, 8 and 12 for gestation length. The QTL on SSC2 achieved the 5% genome-wide significant level and the QTL on SSC8 was consistent with previous reports. Four suggestive QTL were identified for maternal ability related traits including 1 QTL for survival rate of piglets at weaning on SSC8, 3 QTL for average body weight of piglet at weaning on SSC3, 11 and 13.  相似文献   

6.
The aim of this study was to test for the existence of causative genetic variation affecting body composition traits within or adjacent to the porcine insulin-like growth factor 2 (IGF2) gene beyond the known IGF2-intron3-G3072A mutation. A focussed quantitative trait loci analysis using four microsatellite markers within the telomeric region of porcine chromosome 2p was conducted in a large resource population comprising 2741 F2 offspring. The analysis of two subsets of animals that were alternatively homozygous for the in3G3072A mutation provides evidence for additional genetic variation significantly contributing to the overall quantitative trait nucleotide variance within our population.  相似文献   

7.

Background

Quantitative trait loci (QTL) analyses in pig have revealed numerous individual QTL affecting growth, carcass composition, reproduction and meat quality, indicating a complex genetic architecture. In general, statistical QTL models consider only additive and dominance effects and identification of epistatic effects in livestock is not yet widespread. The aim of this study was to identify and characterize epistatic effects between common and novel QTL regions for carcass composition and meat quality traits in pig.

Methods

Five hundred and eighty five F2 pigs from a Duroc × Pietrain resource population were genotyped using 131 genetic markers (microsatellites and SNP) spread over the 18 pig autosomes. Phenotypic information for 26 carcass composition and meat quality traits was available for all F2 animals. Linkage analysis was performed in a two-step procedure using a maximum likelihood approach implemented in the QxPak program.

Results

A number of interacting QTL was observed for different traits, leading to the identification of a variety of networks among chromosomal regions throughout the porcine genome. We distinguished 17 epistatic QTL pairs for carcass composition and 39 for meat quality traits. These interacting QTL pairs explained up to 8% of the phenotypic variance.

Conclusions

Our findings demonstrate the significance of epistasis in pigs. We have revealed evidence for epistatic relationships between different chromosomal regions, confirmed known QTL loci and connected regions reported in other studies. Considering interactions between loci allowed us to identify several novel QTL and trait-specific relationships of loci within and across chromosomes.  相似文献   

8.
Adipocyte size and number are correlated with fat deposition, which is of major concern to human health and pork producers. To identify quantitative trait loci (QTL) for adipocyte size and number in pigs, a total of 341 F2 animals at 240 days in a White Duroc × Erhualian cross were measured for the area, perimeters, volume and number of adipocyte in abdominal fat. A genome scan was performed on these animals and their parents and grandparents with 183 microsatellite markers spanning the pig genome. Five chromosomal regions showed effects on the traits measured, predominantly on adipocyte size, on pig chromosome (SSC) 1, 4, 7 and 9. Neither of these QTL has been reported before this study. The QTL for adipocyte size detected in this study perfectly correspond to the previously reported QTL for fatness traits on SSC1, 4 and 7. The most significant association was evidenced at 58 cM on SSC7. At the locus, the favorable allele decreasing adipocyte size was unusually originated from the obese Erhualian breed. Only a suggestive QTL was detected for adipocyte number on SSC9. The results shed new lights on the understanding of the genetic basis of fatness traits in pigs.  相似文献   

9.
A quantitative trait locus (QTL) analysis of female reproductive data from a three-generation experimental cross between Meishan (MS) and Large White (LW) pig breeds is presented. Six F1 boars and 23 F1 sows, progeny of six LW boars and six MS sows, produced 573 F2 females and 530 F2 males. Six traits, i.e. teat number (TN), age at puberty (AP), ovulation rate (OR), weight at mating (WTM), number of viable embryos (NVE) and embryo survival (ES) at 30 days of gestation were analysed. Animals were genotyped for a total of 137 markers covering the entire porcine genome. Analyses were carried out based on interval mapping methods, using a line-cross (LC) regression and a half-full sib (HFS) maximum likelihood test. Genome-wide (GW) highly significant (P < 0.001) QTL were detected for WTM on SSC 7 and for AP on SSC 13. They explained, respectively, 14.5% and 8.9% of the trait phenotypic variance. Other GW significant (P < 0.05) QTL were detected for TN on SSC 3, 7, 8, 16 and 17, for OR on SSC 4 and 5, and for ES on SSC 9. Two additional chromosome-wide significant (P < 0.05) QTL were detected for TN, three for WTM, four for AP, three for OR, three for NVE and two for ES. With the exception of the two above-mentioned loci, the QTL explained from 1.2% to 4.6% of trait phenotypic variance. QTL alleles were in most cases not fixed in the grand-parental populations and Meishan alleles were not systematically associated with higher reproductive performance.  相似文献   

10.
Puberty is a fundamental development process experienced by all reproductively competent adults, yet the specific factors regulating age at puberty remain elusive in pigs. In this study, we performed a genome scan to identify quantitative trait loci (QTL) affecting age at puberty in gilts using a White Duroc × Erhualian intercross. A total of 183 microsatellites covering 19 porcine chromosomes were genotyped in 454 F2 gilts and their parents and grandparents in the White Duroc × Erhualian intercross. A linear regression method was used to map QTL for age at puberty via QTLexpress. One 1% genome-wise significant QTL and one 0.1% genome-wise significant QTL were detected at 114 cM (centimorgan) on SSC1 and at 54 cM on SSC7, respectively. Moreover, two suggestive QTL were found on SSC8 and SSC17, respectively. This study confirmed the QTL for age at puberty previously identified on SSC1, 7 and 8, and reports for the first time a QTL for age at puberty in gilts on SSC17. Interestingly, the Chinese Erhualian alleles were not systematically favourable for younger age at puberty.  相似文献   

11.
12.
Serum glucose and lipid levels are associated with diabetes mellitus and cardiovascular disease. The purpose of this study was to identify quantitative trait loci (QTL) for serum glucose and lipids in a White Duroc × Erhualian resource population. Serum glucose, glycosylated serum proteins (GSP), and serum lipid levels were measured in a total of 760 F2 animals at 240 days. Strong positive correlations were observed between total cholesterol (TC) and low-density-lipoprotein cholesterol (LDL-C)/high-density-lipoprotein cholesterol (HDL-C). A whole-genome scan was performed with 194 microsatellites covering the pig genome across the entire resource population, revealing 2 QTL for serum glucose and 15 QTL for serum lipids. Of them, three 1% genome-wide significant QTL were identified for LDL-C, TC, and triglycerides (TG) in an adjacent region (67–73 cM) on chromosome 2 (SSC2), and the QTL for LDL-C showed the largest effect with a 95% confidence interval of 5 cM. Another 1% genome-wide significant QTL was found for LDL-C at 87 cM on SSC8. Other QTL showed 5% genome-wide significant or suggestive effects on SSC4, 5, 7, 9, 11, 14, and 15. In total, five significant QTL for serum lipids and a suggestive QTL for GSP on SSC4 were identified for the first time in pigs. Most of the identified QTL are homologous to the previously reported QTL for serum lipids in humans and mice. As correlated traits, QTL for TC and LDL-C were always located in the same genomic regions. The results shed new light on studies of human atherosclerosis and cardiovascular-related diseases. R. Chen, J. Ren, and W. Li contributed equally to this work.  相似文献   

13.

Background

In pig, limb bone length influences ham yield and body height to a great extent and has important economic implications for pig industry. In this study, an intercross population was constructed between the indigenous Chinese Minzhu pig breed and the western commercial Large White pig breed to examine the genetic basis for variation in limb bone length. The aim of this study was to detect potential genetic variants associated with porcine limb bone length.

Methods

A total of 571 F2 individuals from a Large White and Minzhu intercross population were genotyped using the Illumina PorcineSNP60K Beadchip, and phenotyped for femur length (FL), humerus length (HL), hipbone length (HIPL), scapula length (SL), tibia length (TL), and ulna length (UL). A genome-wide association study was performed by applying the previously reported approach of genome-wide rapid association using mixed model and regression. Statistical significance of the associations was based on Bonferroni-corrected P-values.

Results

A total of 39 significant SNPs were mapped to a 11.93 Mb long region on pig chromosome 7 (SSC7). Linkage analysis of these significant SNPs revealed three haplotype blocks of 495 kb, 376 kb and 492 kb, respectively, in the 11.93 Mb region. Annotation based on the pig reference genome identified 15 genes that were located near or contained the significant SNPs in these linkage disequilibrium intervals. Conditioned analysis revealed that four SNPs, one on SSC2 and three on SSC4, showed significant associations with SL and HL, respectively.

Conclusions

Analysis of the 15 annotated genes that were identified in these three haplotype blocks indicated that HMGA1 and PPARD, which are expressed in limbs and influence chondrocyte cell growth and differentiation, could be considered as relevant biological candidates for limb bone length in pig, with potential applications in breeding programs. Our results may also be useful for the study of the mechanisms that underlie human limb length and body height.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0056-6) contains supplementary material, which is available to authorized users.  相似文献   

14.
Crossbreeding of Holstein-Friesian dairy cows with both early maturing (e.g. Aberdeen Angus (AA)) and late maturing (e.g. Belgian Blue (BB)) beef breeds is commonly practised. In Ireland, genetic merit for growth rate of beef sires is expressed as expected progeny difference for carcass weight (EPD(CWT)). The objective of this study was to compare the progeny of Holstein-Friesian cows, sired by AA and BB bulls of low (L) and high (H) EPD(CWT) for performance and carcass traits. A total of 118 spring-born male progeny from 20 (9 AA and 11 BB) sires (8 L and 12 H) were managed together from shortly after birth to about 19 months of age. They were then assigned to one of two mean slaughter weights (560 kg (light) or 620 kg (heavy)). Following slaughter, carcasses were graded for conformation class and fat class, the 6th to 10th ribs joint was dissected as an indicator of carcass composition, and samples of subcutaneous fat and musculus longissimus were subjected to Hunterlab colour measurements. A sample of m. longissimus was also chemically analysed. Slaughter and carcass weights per day of age for AAL, AAH, BBL and BBH were 747, 789, 790 and 805 (s.e. 10.5) g, and 385, 411, 427 and 443 (s.e. 4.4) g, respectively. Corresponding carcass weight, kill-out proportion, carcass conformation class (scale 1 to 5) and carcass fat class (scale 1 to 5) values were 289, 312, 320 and 333 (s.e. 4.0) kg, 516, 522, 542 and 553 (s.e. 3.5) g/kg, 2.5, 2.4, 3.0 and 3.1 (s.e. 0.10), and 3.4, 3.5, 2.9 and 2.8 (s.e. 0.11). There were few breed type × genetic merit interactions. Delaying slaughter date increased slaughter weight, carcass weight and all measures of fatness. It also reduced the proportion of carcass weight in the hind quarter and the proportions of bone and muscle in the ribs joint. None of these effects accompanied the increase in carcass weight due to higher EPD(CWT). It is concluded that BB have superior production traits to AA. Selection of sires for higher EPD(CWT) increases growth rate, kill-out proportion and carcass weight of progeny with little effect on carcass or muscle traits. The extra carcass weight due to higher EPD(CWT) is more valuable commercially than a comparable carcass weight increment from a delay in slaughter date because it comprises a higher proportion of muscle.  相似文献   

15.
Clinical-chemical traits are essential when examining the health status of individuals. The aim of this study was to identify quantitative trait loci (QTL) and the associated positional candidate genes affecting clinical-chemical traits in a reciprocal F(2) intercross between Landrace and Korean native pigs. Following an overnight fast, 25 serum phenotypes related to clinical-chemical traits (e.g., hepatic function parameters, renal function parameters, electrolyte, lipids) were measured in >970 F(2) progeny. All experimental samples were subjected to genotyping analysis using 165 microsatellite markers located across the genome. We identified eleven genome-wide significant QTL in six chromosomal regions (SSC 2, 7, 8, 13, 14, and 15) and 59 suggestive QTL in 17 chromosomal regions (SSC 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, and 18). We also observed significant effects of reciprocal crosses on some of the traits, which would seem to result from maternal effect, QTL on sex chromosomes, imprinted genes, or genetic difference in mitochondrial DNA. The role of genomic imprinting in clinical-chemical traits also was investigated. Genome-wide analysis revealed a significant evidence for an imprinted QTL in SSC4 affecting serum amylase levels. Additionally, a series of bivariate linkage analysis provided strong evidence that QTL in SSC 2, 13, 15, and 18 have a pleiotropic effect on clinical-chemical traits. In conclusion, our study detected both novel and previously reported QTL influencing clinical-chemical traits in pigs. The identified QTL together with the positional candidate genes identified here could play an important role in elucidating the genetic structure of clinical-chemical phenotype variation in humans and swine.  相似文献   

16.
17.
A mapping population of 104 F(3) lines of pearl millet, derived from a cross between two inbred lines H 77/833-2 x PRLT 2/89-33, was evaluated, as testcrosses on a common tester, for traits determining grain and stover yield in seven different field trials, distributed over 3 years and two seasons. The total genetic variation was partitioned into effects due to season (S), genotype (G), genotype x season interaction (G x S), and genotype x environment-within-season interaction [G x E(S)]. QTLs were determined for traits for their G, G x S, and G x E(S) effects, to assess the magnitude and the nature (cross over/non-crossover) of environmental interaction effects on individual QTLs. QTLs for some traits were associated with G effects only, while others were associated with the effects of both G and G x S and/or G, G x S and G x E(S) effects. The major G x S QTLs detected were for flowering time (on LG 4 and LG 6), and mapped to the same intervals as G x S QTLs for several other traits (including stover yield, harvest index, biomass yield and panicle number m(-2)). All three QTLs detected for grain yield were unaffected by G x S interaction however. All three QTLs for stover yield (mapping on LG 2, LG 4 and LG 6) and one of the three QTLs for grain yield (mapping on LG 4) were also free of QTL x E(S) interactions. The grain yield QTLs that were affected by QTL x E(S) interactions (mapping on LG 2 and LG 6), appeared to be linked to parallel QTL x E(S) interactions of the QTLs for panicle number m(-2) on (LG 2) and of QTLs for both panicle number m(-2) and harvest index (LG 6). In general, QTL x E(S) interactions were more frequently observed for component traits of grain and stover yield, than for grain or stover yield per se.  相似文献   

18.
Ren DR  Ren J  Ruan GF  Guo YM  Wu LH  Yang GC  Zhou LH  Li L  Zhang ZY  Huang LS 《Animal genetics》2012,43(5):545-551
The number of vertebrae is associated with body size and meat production in pigs. To identify quantitative trait loci (QTL) for the number of vertebrae, phenotypic values were measured in 1029 individuals from a White Duroc × Chinese Erhualian intercross F2 population. A whole genome scan was performed with 194 microsatellite markers in the F2 population. Four genome‐wide significant QTL and eight chromosome‐wide significant QTL for the number of vertebrae were identified on pig chromosomes (SSC) 1, 2, 6, 7, 10 and 12. The most significant QTL was detected on SSC7 with a confidence interval of 1 cM, explaining 42.32% of the phenotypic variance in the thoracic vertebral number. The significant QTL on SSC1, 2 and 7 confirmed previous reports. A panel of 276 animals representing seven Western and Chinese breeds was genotyped with 34 microsatellite markers in the SSC7 QTL region. No obvious selective sweep effect was observed in the tested breeds, indicating that intensive selection for enlarged body size in Western commercial breeds did not wipe out the genetic variability in the QTL region. The Q alleles for increased vertebral number originated from both Chinese Erhualian and White Duroc founder animals. A haplotype block of approximately 900 kb was found to be shared by all Q‐bearing chromosomes of F1 sires except for one distinct Q chromosome. The critical region harbours the newly reported VRTN gene associated with vertebral number. Further investigations are required to confirm whether VRTN or two other positional candidate genes, PROX2 and FOS, cause the QTL effect.  相似文献   

19.
20.
Compared to maize and temperate grasses, sorghum has received less attention in terms of improving cell wall components. The objectives of this study were to identify quantitative trait loci (QTL) with main effects, epistatic and pleiotropic effects along with QTL × environment (QE) interactions controlling fibre-related traits in sorghum. Neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, fresh leaf mass, stripped stalk mass, dry stalk mass, fresh biomass and dry biomass were analysed from a population of 188 grain × sweet sorghum recombinant inbred lines. A genetic map consisting of 157 DNA markers was constructed, and QTL were detected using composite interval mapping (CIM). CIM detected more than 5 additive QTL per trait explaining 7.1–24.7% of the phenotypic variation. Abundant co-localization of these QTL was observed across all chromosomes, and the highest cluster was identified on chromosome 6. Searching for candidate genes using the confidence interval of our QTL clusters reveals that these clusters might comprise a set of genes that are tightly linked. Some QTL showed multiple effects; however, the allele for each trait was favouring the parent with the increasing effect. QE interactions were observed for QTL showing multiple effects. Additive × additive interaction was observed for 7 out of 10 traits, indicating the importance of epistatic analysis. However, the phenotypic variation explained by digenic interactions was lower compared to the individual QTL. Our results indicate that various genetic components contribute to fibre-related traits and should be considered during the enhancement of sorghum for lignocellulosic biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号