首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence for genetic diversity in cultivated common bean (Phaseolus vulgaris) is reviewed. Multivariate statistical analyses of morphological, agronomic, and molecular data, as well as other available information on Latin American landraces representing various geographical and ecological regions of their primary centers of domestications in the Americas, reveal the existence of two major groups of germplasm: Middle American and Andean South American, which could be further divided into six races. Three races originated in Middle America (races Durango, Jalisco, and Mesoamerica) and three in Andean South America (races Chile, Nueva Granada, and Peru). Their distinctive characteristics and their relationships with previously reported gene pools are discussed.  相似文献   

2.
Wild common bean (Phaseolus vulgaris L.) is distributed throughout the Americas from Mexico to northern Argentina. Within this range, the species is divided into two gene pools (Andean and Middle American) along a latitudinal gradient. The diversity of 24 wild common bean genotypes from throughout the geographic range of the species was described by using sequence data from 13 loci. An isolation–migration model was evaluated using a coalescent analysis to estimate multiple demographic parameters. Using a Bayesian approach, Andean and Middle American subpopulations with high percentage of parentages were observed. Over all loci, the Middle American gene pool was more diverse than the Andean gene pool (πsil=0.0089 vs 0.0068). The two subpopulations were strongly genetically differentiated over all loci (Fst=0.29). It is estimated that the two current wild gene pools diverged from a common ancestor ∼111 000 years ago. Subsequently, each gene pool underwent a bottleneck immediately after divergence and lasted ∼40 000 years. The Middle American bottleneck population size was ∼46% of the ancestral population size, whereas the Andean was 26%. Continuous asymmetric gene flow was detected between the two gene pools with a larger number of migrants entering Middle American gene pool from the Andean gene pool. These results suggest that because of the complex population structure associated with the ancestral divergence, subsequent bottlenecks in each gene pool, gene pool-specific domestication and intense selection within each gene pool by breeders; association mapping would best be practised within each common bean gene pool.  相似文献   

3.
Thirteen soybean plant introduction (PI) lines, selected for their apparent susceptibility to Heterodera glycines, were compared with cultivar Lee 74 as hosts of H. glycines races 1, 2, 3, and 4. Race 3 produced the highest average number of females of the four races. Compared to Lee 74, more (P = 0.05) females of H. glycines race 1 were extracted from eI 274420, PI 274423, and PI 317333; PI 86457 had more females of H. glycines race 2; and PI 86443, PI 86457, PI 261467, PI 274420, PI 274421, and PI 274423 had more females of H. glycines race 3. Similar numbers of females of H. glycines race 4 developed on all of the soybean lines and Lee 74. PI 274421, PI 274420, or PI 196159 could provide a more or equally susceptible host for H. glycines races 1, 2, 3, and 4 than Lee 74. One of these three lines could be substituted for Lee as the standard susceptible cultivar in the race determination test.  相似文献   

4.
Four of five geographical isolates of Heterodera glycines from Indiana classified as Race 3 using standard differentials showed many differences when classified using another group of differentials comprised of five soybean breeding lines and cultivars. Two isolates from northern Indiana produced cysts on more of the differentials tested than did three isolates from southern Indiana, suggesting that potential resistant lines should be tested on a range of H. glycines populations originating from the areas for which cultivars are being developed.  相似文献   

5.
The objective of this study was to determine the interrelationships of Heterodera glycines races based on their resistance to soybean (Glycine max) cultivars and lines against which they were tested. Greenhouse tests determined the numbers of females of each of eight races of H. glycines that developed on 277 to 522 soybean cultivars and lines. A Female Index (number of females on a test cultivar as a percentage of the number on ''Lee 74'') was calculated and used in frequency distributions, correlations, and duster analyses of the resistance reactions to the different races in an attempt to determine relationships among cultivars. Frequency distribution patterns of all cultivars and lines tested against each race were skewed in favor of resistance, and in some cases bimodality was observed. The majority of correlations between pairs of races were highly significant. Cluster analyses based on the correlations divided eight races into four clusters that explained 73% of the variation in resistance. Cluster 1 was comprised of races 2, 4, and 14; Cluster 2 was comprised of races 6 and 9; Cluster 3 was comprised of races 1 and 3; and Cluster 4 was comprised of race 5. The information obtained in this study could increase the efficiency of testing resistant soybean breeding lines for resistance to H. glycines.  相似文献   

6.
V L Velasquez  P Gepts 《Génome》1994,37(2):256-263
Eighty-five wild and cultivated accessions of common bean (Phaseolus vulgaris L.), representing a wide geographic area in the centres of domestication were tested for restriction fragment length polymorphisms (RFLPs). Genomic DNA was digested with one of three restriction enzymes (EcoRI, EcoRV, and HindIII) and hybridized to 12 probes distributed throughout the common bean genome. Accessions could be classified into two major groups with a distinct geographical distribution in Middle America and the Andes. Within each gene pool, cultivated accessions clustered together with wild forms from the same geographical area supporting the multiple domestications hypothesis for this crop. Estimates of Nei's genetic distances among the cultivated races from the two different gene pools varied from 0.12 to 0.56 and among races from the same gene pool from 0.04 to 0.12, suggesting that the divergence in Phaseolus vulgaris has reached the subspecies level. The level of genetic diversity (Ht = 0.38) was twice the value obtained with isozyme analysis. Genetic diversity within races (Hs = 0.27) was four to five times higher compared with isozymes, but genetic diversity between races (Dst = 0.11) was similar for both categories of markers. These results corroborate previous studies on the characterization of genetic diversity in common bean that clearly showed two distinct gene pools, Middle American and Andean. Moreover, RFLP markers are superior to isozymes because they provide better coverage of the genome and reveal higher level of polymorphisms.  相似文献   

7.
Soybean cyst nematode resistant ''Fayette'' and susceptible ''Williams 79'' soybeans (Glycine max) and resistant ''WIS (RRR) 36'' and susceptible ''Eagle'' snap beans (Phaseolus vulgaris) were used in determining the effects of host and temperature on the development, female production, sex ratios, and host response to Heterodera glycines. Temperatures were maintained constant at 16, 20, 24, 28, and 32 C using water-filled tanks. The most rapid development and greatest female production occurred between 20 and 28 C. The equation DS = 5(10⁻⁶)x²y² - 3(10⁻⁴)x²y - 2.8(10⁻³)x² - 1.94(10⁻²)y² + 0.4288x + 1.0220y - 12.7185, where DS = developmental stage, X = time, and Y = temperature, predicted the developmental stage of the nematode and accounted for 84% of the variation. Male : female ratios did not differ within this range and were generally less than one. At all temperatures the resistant soybean produced the greatest number of necrotic responses to H. glycines infection, followed by the resistant snap bean. The susceptible soybean and snap bean produced the fewest necrotic responses.  相似文献   

8.
Progress in bean breeding programs requires the exploitation of genetic variation that is present among races or through introgression across gene pools of Phaseolus vulgaris L. Of the two major common bean gene pools, the Andean gene pool seems to have a narrow genetic base, with about 10% of the accessions in the CIAT core collection presenting evidence of introgression. The objective of this study was to quantify the degree of spontaneous introgression in a sample of common bean landraces from the Andean gene pool. The effects of introgression on morphological, economic and nutritional attributes were also investigated. Homogeneity analysis was performed on molecular marker data from 426 Andean-type accessions from the primary centres of origin of the CIAT common bean core collection and two check varieties. Quantitative attribute diversity for 15 traits was studied based on the groups found from the cluster analysis of marker prevalence indices computed for each accession. The two-group summary consisted of one group of 58 accessions (14%) with low prevalence indices and another group of 370 accessions (86%) with high prevalence indices. The smaller group occupied the outlying area of points displayed from homogeneity analysis, yet their geographic origin was widely distributed over the Andean region. This group was regarded as introgressed, since its accessions displayed traits that are associated with the Middle American gene pool: high resistance to Andean disease isolates but low resistance to Middle American disease isolates, low seed weight and high scores for all nutrient elements. Genotypes generated by spontaneous introgression can be helpful for breeders to overcome the difficulties in transferring traits between gene pools.Communicated by H.C. Becker  相似文献   

9.
Modified polyacrylamide gel and SDS-polyacrylamide gel electrophoretic systems using a low molarity tris-HCl buffer and equal pH of homogenizing buffer and stacking gel provided improved stacking for separation of soluble proteins from Heterodera schachtii, H. trifolii, H. lespedezae, and H. glycines races 1, 2, 3, and 4, compared with previous studies with cyst nematodes, The four Heterodera species were easily distinguished using the polyacrylamide gel system, but H. trifolii and H. lespedezae had similar protein patterns. H. glycines races were not separable by that system. The SDS-polyacrylamide gel system produced different protein patterns for all four Heterodera species although H. trifolii and H. lespedezae differed by only a single band, suggesting that these two may be subspecifically related. A protein band unique to H. glycines races 3 and 4 was not detected in SDS-polyacrylamide gel profiles from races 1 and 2. Molecular weight determinations were 55,000 for distinctive proteins in profiles of H. trifolii and 75,000 for H. glycines races 3 and 4.  相似文献   

10.
This study compared the response of common bean (Phaseolus vulgaris L.) to arbuscular mycorrhizal fungi (AMF) and rhizobia strain inoculation. Two common bean genotypes i.e. CocoT and Flamingo varying in their effectiveness for nitrogen fixation were inoculated with Glomus intraradices and Rhizobium tropici CIAT899, and grown for 50 days in soil–sand substrate in glasshouse conditions. Inoculation of common bean plants with the AM fungi resulted in a significant increase in nodulation compared to plants without inoculation. The combined inoculation of AM fungi and rhizobia significantly increased various plant growth parameters compared to simple inoculated plants. In addition, the combined inoculation of AM fungi and rhizobia resulted in significantly higher nitrogen and phosphorus accumulation in the shoots of common bean plants and improved phosphorus use efficiency compared with their controls, which were not dually inoculated. It is concluded that inoculation with rhizobia and arbuscular mycorrhizal fungi could improve the efficiency in phosphorus use for symbiotic nitrogen fixation especially under phosphorus deficiency.  相似文献   

11.
Heterodera glycines, the soybean cyst nematode, is a major yield-limiting pathogen in most soybean production areas worldwide. Field populations of H. glycines exhibit diversity in their ability to develop on resistant soybean cultivars. Since 1970, this diversity has been characterized by a bioassay used to assign a race classification to a population. The value of the race scheme is reflected in the number and quality of resistant soybean cultivars that have been developed and released by soybean breeders and nematologists working in concert. However, the race scheme also has been misapplied as a means of studying H. glycines genotypes, in part due to the use of the term "race." For fungal and bacterial pathogen species, "race" can theoretically be applied to individuals of a population, thus allowing inference of individual genotypes. Application of a race designation to an individual egg or second-stage juvenile (J2) of H. glycines is not possible because a single J2 cannot be tested on multiple hosts. For other nematode species, "race" is defined by host ranges involving different plant species, whereas the H. glycines race test involves a set of lines of the same plant species. Nonetheless, because H. glycines populations vary in genetic diversity, and this variation has implications for management strategies, a mechanism is needed for documenting and discussing population differences. The HG Type scheme described herein avoids the implication of genetic uniformity or predictability in contrast to the way the race scheme has been used.  相似文献   

12.
The soybean cyst nematode, Heterodera glycines, is one of the most economically important pathogens of soybean. Effective management of the nematode is often dependent on the planting of resistant soybean cultivars. During the past 40 years, more than 60 soybean genotypes and plant introductions (PI) have been reported as resistant to H. glycines. About 130 modern soybean cultivars registered in the United States are resistant to certain races of H. glycines. Several resistance genes have been identified and genetically mapped; however, resistance levels in many soybean cultivars are not durable. Some older cultivars are no longer resistant to certain H. glycines populations in many production areas, especially if a soybean monoculture has been practiced. Past soybean registration reports show that all resistant cultivars developed in public institutions from the mid-1960s to the present have been derived from five PIs. This narrow genetic background is fragile. To further complicate the issue, soybean-H. glycines genetic interactions are complex and poorly understood. Studies to identify soybean resistance genes sometimes have overlapped, and the same genes may have been reported several times and designated by different names. Nevertheless, many potential resistance genes in existing germplasm resources have not yet been characterized. Clearly, it is necessary to identify new resistance genes, develop more precise selection methods, and integrate these resistance genes into new cultivars. Rational deployment of resistant cultivars is critical to future sustained soybean production.  相似文献   

13.
Phaseolus vulgaris lines with heat-stable resistance to Meloidogyne spp. may be needed to manage root-knot nematodes in tropical regions. Resistance expression before and during the process of nematode penetration and development in resistant genotypes were studied at pre- and postinoculation temperatures of 24 °C and 24 °C, 24 °C and 28 °C, 28 °C and 24 °C, and 28 °C and 28 °C. Resistance was effective at all temperature regimes examined, with fewer nematodes in roots of a resistant line compared with a susceptible line. Preinoculation temperature did not modify resistance expression to later infections by root-knot nematodes. However, postinoculation temperatures affected development of Meloidogyne spp. in both the resistant and susceptible bean lines tested. The more rapid development of nematodes to adults at the higher postinoculation temperature of 28 °C in both bean lines suggests direct temperature effects on nematode development instead of on resistance expression of either of two gene systems. Also, resistance was stable at 30 °C and 32 °C.  相似文献   

14.

Background and Aims

Drought is the principal constraint on world production of legume crops. There is considerable variability among genotypes in sensitivity of nitrogen fixation to drought, which has been related to accumulation of ureides in soybean. The aim of this study was to search for genotypic differences in drought sensitivity and ureide accumulation in common bean (Phaseolus vulgaris) germplasm that may be useful in the improvement of tolerance to water deficit in common bean.

Methods

Changes in response to water deficit of nitrogen fixation rates, ureide content and the expression and activity of key enzymes for ureide metabolism were measured in four P. vulgaris genotypes differing in drought tolerance.

Key Results

A variable degree of drought-induced nitrogen fixation inhibition was found among the bean genotypes. In addition to inhibition of nitrogen fixation, there was accumulation of ureides in stems and leaves of sensitive and tolerant genotypes, although this was higher in the leaves of the most sensitive ones. In contrast, there was no accumulation of ureides in the nodules or roots of stressed plants. In addition, the level of ureides in the most sensitive genotype increased after inhibition of nitrogen fixation, suggesting that ureides originate in vegetative tissues as a response to water stress, probably mediated by the induction of allantoinase.

Conclusions

Variability of drought-induced inhibition of nitrogen fixation among the P. vulgaris genotypes was accompanied by subsequent accumulation of ureides in stems and leaves, but not in nodules. The results indicate that shoot ureide accumulation after prolonged exposure to drought could not be the cause of inhibition of nitrogen fixation, as has been suggested in soybean. Instead, ureides seem to be produced as part of a general response to stress, and therefore higher accumulation might correspond to higher sensitivity to the stressful conditions.  相似文献   

15.
Optimization of the Heterodera glycines Race Test Procedure   总被引:1,自引:0,他引:1  
Effects of pot size, length of seedling radicle at the time of inoculation with Heterodera glycines, transplanting after inoculation, type and amount of inoculum, and temperature were tested to determine the optimum procedure for the H. glycines race test. Numbers of H. glycines females extracted from plants in 7.5-cm-d pots tended to be higher than numbers from 10-cm-d pots, but not significantly so. Radicle lengths from 2.5 cm to 7.5 cm had no effect. Transplanting after inoculation reduced the variation in the number of females extracted, but the numbers of females produced were very low. Plump females (40 per pot) or eggs (4,000 per pot) were the best inocula. A constant temperature of 28 C appeared to be optimum. More H. glycines females were extracted from plants 28 days after inoculation than at 35 days. Race tests in which all of these factors were included were still highly variable in the number of H. glycines females extracted from different replications of the same test host. Tests of several susceptible cultivars revealed differences in their capabilities as hosts of H. glycines races.  相似文献   

16.
Scanning electron microscopy (SEM) was used to compare juvenile cephalic morphology of the five described races of Heterodera glycines. Races 1, 2, 3, and 4 were obtained in the United States and race 5 was obtained from Japan. Differences in the gross morphology o f labial discs; ventral, dorsal and lateral lips; amphidial apertures; and fissures on the labial disc o f some specimens were observed. There was considerable interracial and intraracial variation which precluded separation o f juveniles of H. glycines races by SEM.  相似文献   

17.
Currently there are 16 possible races for Heterodera glycines, and these are differentiated based on ability of a nematode population to develop on a set of four differential soybean genotypes. Because results are based on numbers of nematode females that develop to a specific stage rather than on the reproductive capability of these females, race determinations based on female indices may not represent results obtained after several reproductive cycles of H. glycines. Counting numbers of eggs and juveniles, and then developing corresponding indices, would allow reproduction to be considered in making race determinations. Our objectives were to compare the present race identification scheme for H. glycines based on female indices with those using egg and juvenile indices and to examine the effect of temperature on race designations using female, egg, and juvenile indices. Race designations for H. glycines populations from two locations in Illinois were determined at 20, 27, and 30 °C in a water bath. The numbers of females, eggs, and juveniles (at 19 days) were recorded, and an index based on each life stage was calculated. Race determinations based on female, egg, or juvenile indices were inconsistent when conducted at 20 °C, which demonstrates that this temperature is not suitable for identifying races of H. glycines. However race designations at 27 and 30 °C were consistent for all three indices. This indicates that counting females, eggs, or juveniles should be equally reliable when race determinations are conducted at these two temperatures, and choice of method would depend on investigator preference or research objective.  相似文献   

18.
Seven populations of Heterodera trifolii from Arkansas, Kentucky, Pennsylvania, and Australia plus 3 or 4 single-cyst isolates (SCI) from each population were tested for reproduction on seven species of plants to compare the host preferences among and within populations. Common lespedeza, Kummerowia striata cv. Kobe, was a good host for all populations and isolates. Therefore, a plant was considered to be a host if the number of females produced on it was 10% or more of the number on Kobe. All seven populations reproduced on Trifolium repens and T. pratense. None reproduced on Beta vulgaris or Glycine max. One single-cyst isolate from the Australian population produced a few females on T. pratense. The Australian population maintained on carnation, Dianthus caryophyllus, produced females on carnation but not on curly dock, Rumex crispus. However, its subpopulation maintained on T. repens produced females on R. crispus but not on carnation. Four of the other six populations produced females on R. crispus, and four produced females on carnation. Differences in host range were observed among seven of the mother populations and their SCI, and among isolates within each population. Five host range patterns were found in populations and SCI of H. trifolii. Significant quantitative differences occurred among populations in the numbers of females on most hosts, between isolates and their original populations, and among isolates from the same population. SCI selected from white clover produced fewer females on a series of test hosts and had host ranges the same as or narrower than those of the original populations. However, SCI selected from Kobe lespedeza had more females on some hosts and had host ranges the same as or wider than those of the original populations. The host ranges of all populations and SCI of H. trifolii were different from those of populations and SCI of race 3 of H. glycines and H. lespedezae.  相似文献   

19.
Experiments were conducted for 3 years at four locations and 1 year with six soil types at a common location in North Carolina to determine damage and control-cost functions for Heterodera glycines races 1 and 2 on soybean. In the experiments on native loamy sand and sandy soils, tolerance limits for initial population densities were 0 or very low, whereas in a muck, the tolerance limit was 315 eggs/500 cm³ soil. The aggressive race 2 was more damaging than race 1 in Lakeland sand and Norfolk loamy sand. The crop response was not different between races in the Appling sandy clay loam and Belhaven muck. Soybean yield responses to H. glycines were linear in six soil types in microplots at a common site. The amount of damage varied among these soil types, with lowest yields in the muck because of severe drought stress in this soil. An exponential function adequately described soybean yield response relative to nematode control with increasing rates of aldicarb in Norfolk loamy sand. Treatment with aldicarb in the Lakeland sand decreased the effective egg population of H. glycines but had only a minor effect in the muck.  相似文献   

20.
A total of 62 populations of Heterodera glycines were collected in 10 states along the Mississippi and Missouri rivers, and 206 populations were collected in Arkansas. Among the 62 populations, races 2, 3, 4, 5, 6, 9, and 14 were found south of 37°N latitude, and races 1 and 3 were found north of 37°N latitude. In Arkansas samples, races 2, 4, 5, 6, 9, and 14 comprised 87% of the populations. In both groups of samples, H. glycines populations with genes that enabled the population to parasitize cv. Pickett occurred the most frequently, followed by those with genes for parasitism of cv. Peking, then PI88.788, and the fewest with genes for parasitism of PI90.763. The diversity of races in this study raises questions about the effectiveness of race-specific cultivars for the management of soybean cyst nematodes. The greater diversity of races of H. glycines in the southern United States may be because of a longer history of planting resistant cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号