首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Krüppel-like factor 5 (KLF5) takes part in the pathologic processes of many types of cancer; however, its expression and roles in the biological behavior of gastric cancer remain unknown. TargetScan suggested that miR-145-5p is the predicted effective and conserved microRNA (miRNA) that binds to KLF5 through its 3′-untranslated region (UTR). We investigated the expression of KLF5 and miR-145-5p messenger RNA (mRNA) in gastric cancer and then analyzed its role in the biological behavior of gastric cancer cells. Our results indicated that KLF5 expression was detected by immunohistochemistry in 39.7% of the gastric cancer cases and was increased compared with that of the corresponding noncancerous normal mucosa (0.01 < p < 0.05). The poorly differentiated subtype showed positive KLF5 expression, whereas the differentiated subtype showed negative KLF5 expression (p < 0.05). Dual-luciferase reporter assay suggested KLF5 3′-UTR was the direct target of miR-145-5p. Compared with the differentiated gastric cancer, miR-145-5p was downregulated in undifferentiated gastric cancer (p < 0.05). The downregulation of KLF5 expression and differentiation of MGC-803 and BGC-823 caused by siKLF5 or miR-145-5p mimic transfection. Our results indicated that miR-145-5p/KLF5 3′-UTR affected the differentiation of gastric cancer. miR-145-5p was able to promote gastric cancer differentiation by targeting KLF5 3′-UTR directly. Our data suggest a novel mechanism for cancer differentiation and a new facet to the role of miR-145-5p/KLF5 in gastric cancer.  相似文献   

2.
Triple-negative breast cancer (TNBC) is highly metastatic and frequently has a poor prognosis. The lack of comprehension of TNBC and gene therapy targets has led to limitedly effective treatment for TNBC. This study was conducted to better understand the molecular mechanism behind TNBC progression, and to find out promising gene therapy targets for TNBC. Herein the influence of miR-122-5p's binding charged multivesicular body protein 3 (CHMP3) 3′-untranslated region (3′-UTR) on in TNBC cells was investigated. in vitro experiments quantitative real-time polymerase chain reaction, immunoblot analysis, dual-luciferase reporter gene assay, cell counting assay, transwell invasion assay, and flow cytometry-determined cell apoptosis assay were employed. We also used TargetScan Human 7.2 database to find out the target relationship between miR-122-5p and CHMP3 3′-UTR. TImer algorithm was used to provide an overview of the expression of CHMP3 gene across human pan-cancer, to predict the survival outcome of breast cancer patients, and to predict the correlation between CHMP3 gene expression and epithelial-mesenchymal transition (EMT) and mitogen-activated protein kinase (MAPK)-related gene expression. CHMP3 gene was significantly downregulated across a wide range of human cancers including breast cancer (BRCA). A higher level of CHMP3 gene predicted a better 3- and 5-year survival outcome of patients with BRCA. In our experiments, miR-122-5p was significantly upregulated and CHMP3 gene was significantly downregulated in TNBC cells compared with normal cell line. miR-122-5p mimics enhanced TNBC cell viability, proliferation, and invasion whereas the upregulation of CHMP3 gene led to an opposite outcome. Forced expression of miR-122-5p suppressed cell apoptosis, compelled EMT and MAPK signaling whereas forced expression of CHMP3 did the opposite. We then conclude that miR-122-5p promotes aggression and EMT in TNBC by suppressing CHMP3 through MAPK signaling.  相似文献   

3.
Lu  Hengxiao  Wang  Hao  Sun  Peidao  Wang  Jiang  Li  Shuhai  Xu  Tongzhen 《Cytotechnology》2021,73(3):483-496

We investigated the role of miR-522-3p in thymoma-associated myasthenia gravis (TAMG), and the mechanism of action in T cells. The miR-522-3p expression in normal serum, non-thymoma MG patient serum and TAMG patient serum and tissues was detected by quantitative real-time PCR (qRT-PCR), respectively. We assessed miR-522-3p expression in Jurkat cells and human CD4+ T cells after activation by anti-CD3 and anti-CD28 using qRT-PCR. The viability, proliferation, cycle distribution and the levels of CD25, CD69, interleukin-2 (IL-2) and IL-10 in transfected Jurkat cells were detected by Cell counting kit-8, 5-ethynyl-2′-deoxyuridine (EdU), flow cytometry, qRT-PCR, respectively. Targeting relationships of miR-522-3p and SLC31A1 were predicted and validated by bioinformatics analysis and dual-luciferase reporter. The viability, proliferation, cycle distribution and the levels of SLC31A1, CD25, CD69, IL-2 and IL-10 in transfected Jurkat cells were detected by above methods and western blot. The miR-522-3p expression was declined in TAMG and activated T cells. MiR-522-3p inhibitor promoted cell viability, EdU positive cells, cycle progression, and the level of CD25, CD69, IL-2 and IL-10 in Jurkat cells, while the effect of miR-522-3p mimic was the opposite. SLC31A1 was targeted by miR-522-3p, and miR-522-3p inhibited SLC31A1 expression. Overexpressed SLC31A1 reversed the inhibitory effects of miR-522-3p mimic on cell viability, EdU positive cell, cycle progression, and the levels of IL-2 and IL-10 in transfected Jurkat cells. MiR-522-3p expression was down-regulated in TAMG, and miR-522-3p inhibited proliferation and activation by regulating SLC31A1 expression in T cells.

  相似文献   

4.
5.
Background

The combined restoration of tumor-suppressive microRNAs (miRs) has been identified as a promising approach for inhibiting breast cancer development. This study investigated the effect of the combined restoration of miR-424-5p and miR-142-3p on MCF-7 cells and compared the efficacy of the combined therapy with the monotherapies with miR-424-5p and miR-142-3p.

Methods

After transfection of miR-424-5p and miR-142-3p mimics into MCF-7 cells in the combined and separated manner, the proliferation of tumoral cells was assessed by the MTT assay. Also, the apoptosis, autophagy, and cell cycle of the cells were analyzed by flow cytometry. Western blot and qRT-PCR were used to study the expression levels of c-Myc, Bcl-2, Bax, STAT-3, Oct-3, and Beclin-1.

Results

Our results have demonstrated that the combined restoration of miR-424-5p and miR-142-3p is more effective in inhibiting tumor proliferation via upregulating Bax and Beclin-1 and downregulating Bcl-2 and c-Myc. Besides, the combined therapy has arrested the cell cycle in the sub-G1 and G2 phases and has suppressed the clonogenicity via downregulating STAT-3 and Oct-3, respectively.

Conclusion

The combined restoration of miR-424-5p and miR-142-3p is more effective in inhibiting MCF-7 breast cancer development than monotherapies with miR-424-5p and miR-142-3p.

  相似文献   

6.
Downregulation of microRNA-590-3p (miR-590-3p) is a frequently occurring, nonphysiological event which is observed in several human cancers, especially breast cancer. However, the significance of miR-590-3p still remain unclear in the progression of this disease. This study explored the role of miR-590-3p in apoptosis of breast cancer cells. Gene expression of miR-590-3p, Sirtuin-1 (SIRT1), Bcl-2 associated X protein (BAX), and p21 was evaluated with real-time polymerase chain reaction (PCR) and SIRT1 protein expression was assessed by Western blot analysis in breast cancer cell lines. Bioinformatics analysis and luciferase reporter assay were used to evaluate targeting of SIRT1 messenger RNA (mRNA) by miR-590-3p. Cells were transfected with miR-590-3p mimic and inhibitor and their effects on the expression and activity of SIRT1 were evaluated. The effects of miR-590-3p upregulation on the acetylation of p53 as well as cell viability and apoptosis were assessed by Western blot analysis, WST-1 assay, and flow cytometry, respectively. miR-590-3p expression was considerably downregulated in breast cancer cells which was accompanied by upregulation of SIRT1 expression. SIRT1 was recognized as a direct target for miR-590-3p in breast cancer cells and its protein expression and activity was dramatically inhibited by the miR-590-3p. In addition, there was an increase in p53 and its acetylated form that ultimately led to upregulation of BAX and p21 expression, suppression of cell survival, and considerable induction of apoptosis in breast cancer cells. These findings suggest that miR-590-3p exerts tumor-suppressing effects through targeting SIRT1 in breast cancer cells, which makes it a potential therapeutic target for developing more efficient treatments for breast cancer.  相似文献   

7.
Background

Clear cell type renal cell carcinoma (ccRCC) is the most common renal cell carcinoma (RCC). In this study, we examined the expressions of VHL and miR-223 in ccRCC patients? tissues to investigate the possible role in the development of ccRCC.

Methods and results

This study collected five expression profiles (GSE36139, GSE3, GSE73731, GSE40435, and GSE26032) from Gene Omnibus Data. Expressions of VHL and miR-223 in paraffinized tumor and normal tissues of 100 Turkish patients' ccRCC tissues were determined by bioinformatic data mining and real-time quantitative polymerase chain reaction (qRT-PCR). The VHL gene was subjected to mutational analysis by DNA sequencing, and pVHL was analyzed using western blotting. Our study's t-test and Pearson correlation analysis showed that VHL gene expression in tumoral tissues with a???0.39-fold decrease was not significantly lower than normal tissues (p?=?0.441), and a 0.97-fold increase miR-223 (p?=?0.045) was determined by real-time PCR. Also, as a result of DNA sequence analysis performed in the VHL gene, it was found that 26% of the patients have mutations. The mutations for (VHL):c.60C>A (p.Val20=) and (VHL):c.467delA (p.Tyr156Leu) was detected for the first time in Turkish patients.

Conclusions

The present study demonstrated that the differences in the expression levels of miR-223 have the potential to be biomarkers to determine the poor prognosis in ccRCC.

  相似文献   

8.
9.
Estrogen receptors (ERs) are involved in the development of many types of malignant tumors, in particular, breast cancer. Among others, ERs affect cell growth, proliferation, and differentiation. The microRNA (miRNA) miR-142-3p has been shown to inhibit carcinogenesis by regulating various cellular processes, including cell cycle progression, cell migration, apoptosis, and invasion. It does so via targeting molecules involved in a range of signaling pathways. We surgically collected 20 ER-positive breast cancer samples, each with matched adjacent normal breast tissue, and measured the expression of miR-142-3p via quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics methods, luciferase reporter assay, qRT-PCR, and western blot analysis were used to assess whether miR-142-3p could target ESR1, which encodes the estrogen receptor, in ER-positive breast cancer cells and patient samples. We also restored miRNA expression and performed cell viability, cytotoxicity, and colony formation assays. Western blot analysis and qRT-PCR were used to study the expression of apoptosis and stemness markers. We found that miR-142-3p is downregulated in ER-positive breast cancers. Restoration of miR-142-3p expression in ER-positive breast cancer cells reduced cell viability, induced apoptosis via the intrinsic pathway and decreased both colony formation and the expression of stem cell markers. Bioinformatic analysis predicted miR-142-3p could bind to 3′-untranslated region ESR1 messenger RNA (mRNA). Consistently, we demonstrated that miR-142-3p reduced luciferase activity in ER-positive breast cancer cells, and decreased ESR1 expression in both mRNA and protein levels. The results revealed miR-142-3p and ESR1 expression correlated negatively in ER-positive breast cancer samples. The results suggest miR-142-3p acts as a tumor suppressor via multiple mechanisms. Thus, restoration of miR-142-3p expression, for example, via miRNA replacement therapy, may represent an effective strategy for the treatment of ER-positive breast cancer patients.  相似文献   

10.

Objectives

To explore the roles of miR-130b-3p and miR-301b-3p which may regulate Rb1-inducible coiled-coil 1 (Rb1cc1) expression during myogenic differentiation of chicken primary myoblasts.

Results

After 4 days of myogenic differentiation, myotubes appeared and after 6 days the cells fused to each other and expression of MyHC could be detected by immunofluorescence staining. TargetScan and RNAhybrid 2.2 showed miR-130b-3p and miR-301b-3p were well complementary with the target site of Rb1cc1 3′-untranslated region (3′-UTR). Using the dual-luciferase assay, we found miR-130b-3p and miR-301b-3p could inhibit Rb1cc1 expression by binding to its 3′-UTR. Real-time PCR showed Rb1cc1 mRNA expression level was almost reciprocal to that of miR-130b-3p or miR-301b-3p during myogenic differentiation. Furthermore, over-expression of miR-130b-3p or miR-301b-3p down-regulated the expression levels of Rb1cc1, myoblast determination protein, myogenin and myosin heavy chain.

Conclusions

miR-130b-3p or miR-301b-3p negatively regulate Rb1cc1 expression to affect myogenic differentiation.
  相似文献   

11.
摘要 目的:探讨miR-1-3p在胰腺癌发生发展中的分子机制。方法:以MIA-PaCa-2,SW 1990为研究目标,通过qRT-PCR技术检测miR-1-3p的表达量,利用TargetScan和miRDB数据库预测miR-1-3p的下游靶基因及结合位点,并通过构建双荧光素酶报告基因,进一步确认miR-1-3p与靶基因的结合。利用CCK8细胞增殖实验及平板克隆形成实验检测过表达miR-1-3p及敲低CAPRIN1对细胞增殖的作用;利用流式检测细胞周期;利用蛋白质免疫印迹方法检测miR-1-3p对CAPRIN1及其下游基因的影响;通过流式来确认,过表达miR-1-3p及敲减CAPRIN1基因对细胞周期的影响。结果:miR-1-3p在胰腺癌细胞MIA-PaCa-2,SW 1990中低表达;miR-1-3p直接与CAPRIN1的3''-untranslated region (3''- UTR)结合;过表达miR-1-3p或抑制CAPRIN1基因的表达可明显抑制胰腺癌细胞的增殖能力,同时也产生细胞周期阻滞。结论:miR-1-3p通过抑制CAPRIN1基因表达,而产生细胞周期阻滞进而抑制胰腺癌细胞的增殖能力。  相似文献   

12.
High expression of special AT-rich-binding protein 1 (SATB1) correlates with the advanced TNM stage and short overall and recurrence-free survival of gastric cancer (GC). A bioinformatic analysis revealed that SATB1 3′-untranslated region (3′-UTR) and long noncoding RNA UCA1 (lncRNA-UCA1) might competitively bind to microRNA-495-3p (miR-495-3p). Interestingly, lncRNA-UCA1 is also an important contributor to GC. The current study aimed to demonstrate the potential interaction among SATB1/miR-495-3p/lncRNA-UCA1 network and their effects on GC proliferation and invasion. The expression in GC and paracancerous normal tissues were assessed using real-time polymerase chain reaction and Western blot analysis. Luciferase reporter, RNA pull-down, and transfection assays were performed to determine the interaction among SATB1/miR-495-3p/lncRNA-UCA1 network in GC cells. GC proliferation and invasion were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, transwell invasion, and colony formation assays. Results showed higher expression of SATB1 and lncRNA-UCA1 but lower miR-495-3p expression in GC than in the normal tissues. In luciferase reporter assay, miR-495-3p bound to three seed sequences in SATB1 3′-UTR but only one in lncRNA-UCA1. SATB1 knockdown increased the combination of miR-495-3p with lncRNA-UCA1 but decreased lncRNA-UCA1 expression. Decreased lncRNA-UCA1 was also observed with the mimics increased miR-495-3p. These data suggested that SATB1 3′-UTR functions as a competing endogenous RNA of miR-495-3p and positively regulates lncRNA-UCA1. LncRNA-UCA1 knockdown only decreased SATB1 expression in MKN-45 cells but not in BGC-823 cells, which suggested that the regulatory effect of lncRNA-UCA1 on SATB1 by sponging miR-495-3p is cell-dependent. This study further identified that SATB1/miR-495-3p/lncRNA-UCA1 network is implicated in GC proliferation and invasion. The current study firstly revealed that SATB1 interacts with miR-495-3p/lncRNA-UCA1 network, whereby enhancing GC proliferation and invasion.  相似文献   

13.
Single nucleotide polymorphisms (SNPs) in putative microRNA (miRNA) target sites (miRSNPs) could affect the binding of miRNA with the target and contribute to the susceptibility of human cancers. However, the role of miRSNPs in gastric cancer susceptibility remains largely unknown. Since the over-expression of B7-H1 protein has been reported to be closely related to disease progression of gastric cancer, we investigated the possible role of miRSNPs at the 3′-untranslated region (3′-UTR) of B7-H1 in the risk of developing gastric cancer. In this association study on 205 gastric adenocarcinoma patients and 393 non-cancer controls, we found that the genotype distribution of a common C>G polymorphism (rs4143815) was significantly different between the cases and controls (P = 1.32 × 10?8). Compared with CC homozygotes, GG homozygotes and G allele carriers showed 3.73-fold (P = 2.98 × 10?8) and 1.85-fold (P = 0.002) increased risk of gastric adenocarcinoma, respectively. Stratified analyses indicated that variant genotypes had a strong association with the clinic-pathological features of gastric cancer including differentiation grade, depth of tumor infiltration, and tumor node metastasis (TNM) stage (P < 0.001). Luciferase reporter assay indicated that this SNP might be responsible for aberrant B7-H1 protein expression in gastric cancer by disrupting the interaction between miR-570 and B7-H1 mRNA. These results are consistent with our hypothesis and indicate that genetic polymorphisms influencing B7-H1 expression modify cancer susceptibility.  相似文献   

14.
Background

Thyroid cancer is the most common malignant tumor of the endocrine system seen in the thyroid gland. More than 90% of thyroid cancers comprise papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC). Although anaplastic thyroid carcinoma (ATC) accounts for less than 2% of thyroid cancer. But patients’ lifespan after diagnosis is about 6 months. Surgical interventions, radioactive iodine use, and chemotherapy are not sufficient in the treatment of ATC, so alternative therapies are needed.

Methods and results

The WST-1 assay test was performed to evaluate the anti-proliferative effects of Valproic acid (VPA). Also, the effect of VPA on miRNAs affecting histone deacetylase was determined by Quantitative RT-PCR. In the SW1736 cell line, IC50 dose for VPA was found 1.6 mg/ml. In our study, the level of oncogenic genes expression in cells treated with VPA, including miR-184, miR-222-5p, miR-124-3p, and miR-328-3p, decreased. Also, the expression of tumor inhibitory genes including miR-323-5p, miR-182-5p, miR-138-5p, miR-217, miR-15a-5p, miR-29b-3p, miR-324-5p and miR-101-5p increased significantly.

Conclusions

VPA can ad-just countless gene expression patterns, including microRNAs (miRNAs), by targeting histone deacetylase (HDAC). However, further studies are required for more accurate results.

  相似文献   

15.
Abstract

Purpose: To identify miRNAs associated with distant recurrence during tamoxifen treatment and build a recurrence prediction model.

Materials and methods: We measured the expression of five miRNAs (miR-134, miR-125b-5P, miRNA-30a, miR-10a-5p and miR-222). A total of 176 tumour tissues from 176 patients who had hormone receptor positive breast cancer with tamoxifen treatment were used to measure miRNA expression using quantitative real-time PCR (qRT-PCR).

Results: The five miRNAs were all up-regulated in distant recurrence cases within 5?years after surgery and during tamoxifen treatment. Kaplan-Meier survival analyses based on expression cut-offs determined by receiver characteristics curves (ROC) showed that high expression of miR-134, miR-125b-5P, miRNA-30a, miR-10a-5p and miR-222 were significantly (log-rank p-value =0.006, p-value <0.0001, p-value <0.0001, p-value <0.0001 and p-value <0.0001, respectively) associated with short relapse-free time. Our results were used to build a combined 3 miRNAs expression model. It could be used to categorize high-risk subset of patients with short relapse-free survival (AUC =0.891, p-value <0.0001).

Conclusions: Distant recurrence during tamoxifen treatment of hormone positive breast cancer might be affected by tamoxifen resistance related miRNAs. Such distant recurrence can be predicted using miRNA measurement.  相似文献   

16.
17.
目的:探讨外周血mi R-17-92簇对早期胃癌的诊断价值,为胃癌的早期诊断及治疗提供参考依据。方法:收集胃癌125例(Ⅰ期35例,Ⅱ期28例,Ⅲ期39例,Ⅳ期23例)和癌前病变24例(包括肠化生及上皮内瘤变),同时选择65例慢性胃炎作为对照组。采用实时荧光定量PCR技术(Real-time quantitative PCR,RT-qPCR)检测患者血清中的mi R-17-92基因簇的表达水平。通过受试者工作曲线(Receiver Operating Curve, ROC)及曲线下的面积(Area Under the Curve,AUC)评估mi R-17-92基因簇表达水平诊断早期胃癌的敏感性和特异性。结果:(1)慢性胃炎与癌前病变mi R-17-92基因簇表达比较无显著差异(P0.05);(2)早期胃癌及进展期胃癌mi R-17-5p表达明显高于慢性胃炎(P0.05),mi R-19a-3p、mi R-19b-3p、mi R-20a-5p和mi R-92a-3p表达则显著低于慢性胃炎及进展期胃癌(P0.05);(3)miR-17-5p诊断早期胃癌的曲线下面积较mi R-19a-3p、mi R-19b-3p、mi R-20a-5p、mi R-92a-3p及CEA更高;(4)miR-19a-3p、mi R-19b-3p、mi R-20a-5p、mi R-92a-3p高低表达组与在胃癌的浸润深度间有显著性差异(P0.05),mi R-19b-3p高低表达组在胃癌的临床分期间有显著性差异(P0.05);(5)miR-17-5p、mi R-19a-3p、mi R-19b-p、mi R-20a-5p、mi R-92a-3p诊断早期胃癌的阳性率较CEA、CA199高。结论:外周血mi R-17-92基因簇对于早期胃癌的诊断价值明显优于CEA和CA199,这可能为胃癌的早诊早治提供新的策略。  相似文献   

18.
A functional rs4245739 A>C single nucleotide polymorphism (SNP) locating in the MDM43’-untranslated (3’-UTR) region creates a miR-191-5p or miR-887-3p targeting sites. This change results in decreased expression of oncogene MDM4. Therefore, we examined the association between this SNP and small cell lung cancer (SCLC) risk as well as its regulatory function in SCLC cells. Genotypes were determined in two independent case-control sets consisted of 520SCLC cases and 1040 controls from two regions of China. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression. The impact of the rs4245739 SNP on miR-191-5p/miR-887-3p mediated MDM4 expression regulation was investigated using luciferase reporter gene assays. We found that the MDM4 rs4245739AC and CC genotypes were significantly associated with decreased SCLC susceptibility compared with the AA genotype in both case-control sets (Shandong set: OR = 0.53, 95% CI = 0.32–0.89, P = 0.014; Jiangsu set: OR = 0.47, 95% CI = 0.26–0.879, P = 0.017). Stratified analyses indicated that there was a significantly multiplicative interaction between rs4245739 and smoking (P interactioin = 0.048). After co-tranfection of miRNAs and different allelic-MDM4 reporter constructs into SCLC cells, we found that the both miR-191-5p and miR-887-3p can lead to significantly decreased MDM4 expression activities in the construct with C-allelic 3’-UTR but not A-allelic 3’-UTR, suggesting a consistent genotype-phenotype correlation. Our data illuminate that the MDM4rs4245739SNP contributes to SCLC risk and support the notion that gene 3’-UTR genetic variants, impacting miRNA-binding, might modify SCLC susceptibility.  相似文献   

19.
20.
microRNAs (miRNAs) play a crucial role in mediation of the cellular sensitivity to ionizing radiation (IR). Previous studies revealed that miR-300 was involved in the cellular response to IR or chemotherapy drug. However, whether miR-300 could regulate the DNA damage responses induced by extrinsic genotoxic stress in human lung cancer and the underlying mechanism remain unknown. In this study, the expression of miR-300 was examined in lung cancer cells treated with IR, and the effects of miR-300 on DNA damage repair, cell cycle arrest, apoptosis and senescence induced by IR were investigated. It was found that IR induced upregulation of endogenous miR-300, and ectopic expression of miR-300 by transfected with miR-300 mimics not only greatly enhanced the cellular DNA damage repair ability but also substantially abrogated the G2 cell cycle arrest and apoptosis induced by IR. Bioinformatic analysis predicted that p53 and apaf1 were potential targets of miR-300, and the luciferase reporter assay showed that miR-300 significantly suppressed the luciferase activity through binding to the 3′-UTR of p53 or apaf1 mRNA. In addition, overexpression of miR-300 significantly reduced p53/apaf1 and/or IR-induced p53/apaf1 protein expression levels. Flow cytomertry analysis and colony formation assay showed that miR-300 desensitized lung cancer cells to IR by suppressing p53-dependent G2 cell cycle arrest, apoptosis and senescence. These data demonstrate that miR-300 regulates the cellular sensitivity to IR through targeting p53 and apaf1 in lung cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号