首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two analogues of angiotensin III were compared as antagonists of the pressor response to angiotensin II (ANG II) and angiotensin III (ANG III) in conscious, unrestrained rats. Dose-mean arterial pressure (MAP) response curves were obtained for ANG II and ANG III in the absence or presence of [Ile7]ANG III (1.3 x 10(-7) mol/kg) or [Sar1 Ile7]ANG III (1.2 x 10(-7) mol/kg). In the presence of [Ile7]ANG III, the dose-MAP response curves for ANG II and ANG III were significantly displaced to the right. [Ile7]ANG III behaved as a partial agonist on ANG II but not ANG III receptors. In the presence of [Sar1 Ile7]ANG III, the dose-MAP response curve for ANG III but not ANG II was significantly displaced to the right. This suggests that [Sar1 Ile7]ANG III is a selective antagonist of ANG III in the vasculature. [Ile7]ANG III, on the other hand, antagonizes both ANG II and ANG III receptors. Our results support the hypothesis of the existence of a sub-class of angiotensin receptors activated by ANG III in the vascular smooth muscle.  相似文献   

2.
Sb(III) oxidation was documented in an Agrobacterium tumefaciens isolate that can also oxidize As(III). Equivalent Sb(III) oxidation rates were observed in the parental wild-type organism and in two well-characterized mutants that cannot oxidize As(III) for fundamentally different reasons. Therefore, despite the literature suggesting that Sb(III) and As(III) may be biochemical analogs, Sb(III) oxidation is catalyzed by a pathway different than that used for As(III). Sb(III) and As(III) oxidation was also observed for an eukaryotic acidothermophilic alga belonging to the order Cyanidiales, implying that the ability to oxidize metalloids may be phylogenetically widespread.  相似文献   

3.
The distribution of Fe(III), its availability for microbial reduction, and factors controlling Fe(III) availability were investigated in sediments from a freshwater site in the Potomac River Estuary. Fe(III) reduction in sediments incubated under anaerobic conditions and depth profiles of oxalate-extractable Fe(III) indicated that Fe(III) reduction was limited to depths of 4 cm or less, with the most intense Fe(III) reduction in the top 1 cm. In incubations of the upper 4 cm of the sediments, Fe(III) reduction was as important as methane production as a pathway for anaerobic electron flow because of the high rates of Fe(III) reduction in the 0- to 0.5-cm interval. Most of the oxalate-extractable Fe(III) in the sediments was not reduced and persisted to a depth of at least 20 cm. The incomplete reduction was not the result of a lack of suitable electron donors. The oxalate-extractable Fe(III) that was preserved in the sediments was considered to be in a form other than amorphous Fe(III) oxyhydroxide, since synthetic amorphous Fe(III) oxyhydroxide, amorphous Fe(III) oxyhydroxide adsorbed onto clay, and amorphous Fe(III) oxyhydroxide saturated with adsorbed phosphate or fulvic acids were all readily reduced. Fe3O4 and the mixed Fe(III)-Fe(II) compound(s) that were produced during the reduction of amorphous Fe(III) oxyhydroxide in an enrichment culture were oxalate extractable but were not reduced, suggesting that mixed Fe(III)-Fe(II) compounds might account for the persistence of oxalate-extractable Fe(III) in the sediments. The availability of microbially reducible Fe(III) in surficial sediments demonstrates that microbial Fe(III) reduction can be important to organic matter decomposition and iron geochemistry. However, the overall extent of microbial Fe(III) reduction is governed by the inability of microorganisms to reduce most of the Fe(III) in the sediment.  相似文献   

4.
钝顶螺旋藻生物富集Cr(Ⅲ)影响因素的研究   总被引:16,自引:0,他引:16  
对钝顶螺旋藻生物富集Cr(Ⅲ)的影响因素进行了研究。发现螺旋藻对Cr(Ⅲ)的生物富集主要经历了快速的吸附和缓慢的吸收两个步骤;化学键较弱的Cr(Ⅲ)化合物具有较高的富集效率;藻细胞浓度一定时,随着Cr(Ⅲ)浓度的增加,单位重量螺旋藻对Cr(Ⅲ)的富集量不断增加,最后趋于饱和;当Cr(Ⅲ)浓度一定时,随着藻细胞浓度的增加,螺旋藻对Cr(Ⅲ)的总富集量逐渐增加而单位重量藻体的富集量减少。研究还证实,螺旋藻干粉比新鲜藻能富集更多的Cr(Ⅲ);pH值是影响Cr(Ⅲ)生物富集的一个重要影响因素,最佳pH在7左右;温度升高和加强光强均可加强Cr(Ⅲ)的富集;阳离子对Cr(Ⅲ)的富集存在一定的促进或抑制作用。  相似文献   

5.
New Insights into Microbial Oxidation of Antimony and Arsenic   总被引:1,自引:0,他引:1       下载免费PDF全文
Sb(III) oxidation was documented in an Agrobacterium tumefaciens isolate that can also oxidize As(III). Equivalent Sb(III) oxidation rates were observed in the parental wild-type organism and in two well-characterized mutants that cannot oxidize As(III) for fundamentally different reasons. Therefore, despite the literature suggesting that Sb(III) and As(III) may be biochemical analogs, Sb(III) oxidation is catalyzed by a pathway different than that used for As(III). Sb(III) and As(III) oxidation was also observed for an eukaryotic acidothermophilic alga belonging to the order Cyanidiales, implying that the ability to oxidize metalloids may be phylogenetically widespread.  相似文献   

6.
Mechanisms for Fe(III) oxide reduction were investigated in Geothrix fermentans, a dissimilatory Fe(III)-reducing microorganism found within the Fe(III) reduction zone of subsurface environments. Culture filtrates of G. fermentans stimulated the reduction of poorly crystalline Fe(III) oxide by washed cell suspensions, suggesting that G. fermentans released one or more extracellular compounds that promoted Fe(III) oxide reduction. In order to determine if G. fermentans released electron-shuttling compounds, poorly crystalline Fe(III) oxide was incorporated into microporous alginate beads, which prevented contact between G. fermentans and the Fe(III) oxide. G. fermentans reduced the Fe(III) within the beads, suggesting that one of the compounds that G. fermentans releases is an electron-shuttling compound that can transfer electrons from the cell to Fe(III) oxide that is not in contact with the organism. Analysis of culture filtrates by thin-layer chromatography suggested that the electron shuttle has characteristics similar to those of a water-soluble quinone. Analysis of filtrates by ion chromatography demonstrated that there was as much as 250 microM dissolved Fe(III) in cultures of G. fermentans growing with Fe(III) oxide as the electron acceptor, suggesting that G. fermentans released one or more compounds capable of chelating and solubilizing Fe(III). Solubilizing Fe(III) is another strategy for alleviating the need for contact between cells and Fe(III) oxide for Fe(III) reduction. This is the first demonstration of a microorganism that, in defined medium without added electron shuttles or chelators, can reduce Fe(III) derived from Fe(III) oxide without directly contacting the Fe(III) oxide. These results are in marked contrast to those with Geobacter metallireducens, which does not produce electron shuttles or Fe(III) chelators. These results demonstrate that phylogenetically distinct Fe(III)-reducing microorganisms may use significantly different strategies for Fe(III) reduction. Thus, it is important to know which Fe(III)-reducing microorganisms predominate in a given environment in order to understand the mechanisms for Fe(III) reduction in the environment of interest.  相似文献   

7.
The mechanism of Fe(III) reduction was investigated using voltammetric techniques in anaerobic incubations of Shewanella putrefaciens strain 200 supplemented with Fe(III) citrate or a suite of Fe(III) oxides as terminal electron acceptor. Results indicate that organic complexes of Fe(III) are produced during the reduction of Fe(III) at rates that correlate with the reactivity of the Fe(III) phase and bacterial cell density. Anaerobic Fe(III) solubilization activity is detected with either Fe(III) oxides or Fe(III) citrate, suggesting that the organic ligand produced is strong enough to destabilize Fe(III) from soluble or solid Fe(III) substrates. Results also demonstrate that Fe(III) oxide dissolution is not controlled by the intrinsic chemical reactivity of the Fe(III) oxides. Instead, the chemical reaction between the endogenous organic ligand is only affected by the number of reactive surface sites available to S. putrefaciens. This report describes the first application of voltammetric techniques to demonstrate production of soluble organic-Fe(III) complexes by any Fe(III)-reducing microorganism and is the first report of a Fe(III)-solubilizing ligand generated by a metal-reducing member of the genus Shewanella.  相似文献   

8.
The effects of decylubiquinone, a ubiquinone analogue, on mitochondrial function and inhibition thresholds of the electron transport chain enzyme complexes in synaptosomes were investigated. Decylubiquinone increased complex I/III and complex II/III activities by 64 and 80%, respectively, and attenuated reductions in oxygen consumption at high concentrations of the complex III inhibitor myxothiazol. During inhibition of complex I, decylubiquinone attenuated reductions in synaptosomal oxygen respiration rates, as seen in the complex I inhibition threshold. Decylubiquinone increased the inhibition thresholds of complex I/III, complex II/III, and complex III over oxygen consumption in the nerve terminal by 25–50%, when myxothiazol was used to inhibit complex III. These results imply that decylubiquinone increases mitochondrial function in the nerve terminal during complex I or III inhibition. The potential benefits of decylubiquinone in diseases where complex I, I/III, II/III, or III activities are deficient are discussed.  相似文献   

9.
A phosphorescent trivalent cation, terbium [Tb(III)], has been used to study the binding of different polyvalent cations to the proteins of wheat (Triticum aestivum L.) root plasma membranes. The phosphorescence emission intensity of Tb(III) was enhanced after Tb(III) binding to wheat root plasma membranes as a result of nonradiative resonance energy transfer from the membrane protein tyrosine and phenylalanine residues. Complex, saturable Tb(III) binding was observed, suggesting multiple binding sites. Bound Tb(III) could be displaced by divalent cations in the general order: Mn(II) > Ca(II) > Mg(II). Al(III) was very effective in reducing the protein-enhanced Tb(III) phosphorescence at pH values below 5. Al(III) also altered the Tb(III) phosphorescence lifetime, suggesting Al(III)-induced changes in membrane protein conformation. The more Al(III)-sensitive wheat cultivar (Anza) bound Al(III) with higher affinity than the more tolerant cultivar (BH 1146). At pH 5.5 where Al(III) did not displace bound Tb(III), low levels of Al(III) reduced the ability of Mn(II) to decrease Tb(III) phosphorescence. The significance of these results is discussed with respect to the mechanisms of Al(III) tolerance in wheat and the potential beneficial effects of Al(III) in reducing Mn(II) phytotoxicity.  相似文献   

10.
Thin-layer chromatographic systems are described for the analysis of various preformed metal complex dyes (aluminon-chromium(III), carminic acid-aluminum, carminic acid-chromium(III), carminic acid-iron(III), oelestine blue-chromium(III), gallamine blue-chromium(III), gallocyanin-chromium(III), hematein-aluminum, hematein-chromium(III), purpurin-aluminum) and their parent dyes. Certain of there dyes have also been analysed by agar-gel electrophoresis or gel-filtration chromatography. The merits of the three analytical methods are discussed.  相似文献   

11.
Studies with the dissimilatory Fe(III)-reducing microorganism Geobacter metallireducens demonstrated that the common technique of separating Fe(III)-reducing microorganisms and Fe(III) oxides with semipermeable membranes in order to determine whether the Fe(III) reducers release electron-shuttling compounds and/or Fe(III) chelators is invalid. This raised doubts about the mechanisms for Fe(III) oxide reduction by this organism. However, several experimental approaches indicated that G. metallireducens does not release electron-shuttling compounds and does not significantly solubilize Fe(III) during Fe(III) oxide reduction. These results suggest that G. metallireducens directly reduces insoluble Fe(III) oxide.  相似文献   

12.
Corpora cardiaca-corpora allata (CC-CA) from vitellogenic females of Nauphoeta cinerea degraded, in vitro, racemic and (10R)-juvenile hormone III (JH III) at a rate of 249 pmol/CC-CA/h and 786 pmol/CC-CA/h, respectively. The major metabolite formed was JH III acid, together with some highly polar products. CC-CA homogenates degraded racemic JH III to a small extent, whereas (10R)-JH III was degraded efficiently to JH III acid. No highly polar products were formed by CC-CA homogenates. When CC-CA were incubated with racemic JH III acid, some of this substance was degraded to highly polar products, and a minor part was methylated to JH III. CC degraded very little JH III acid and did not methylate it to JH III. CC-CA homogenates methylated JH III acid very efficiently; we measured an apparent Kmax of 37.8 μM and a Vmax of 1,260 pmol/4 h/ CC-CA equivalent. The addition of JH III acid to CC-CA in vitro increased the rate of biosynthesis of JH III, as determined by measuring incorporation of methyl[14C]methionine into JH III. These data indicate that the metabolite JH III acid can enter the CA and be methylated to JH III.  相似文献   

13.
Tseng YY  Yu CW  Liao VH 《The FEBS journal》2007,274(10):2566-2572
Because arsenic is the most prevalent environmental toxin, it is imperative that we understand the mechanisms of metalloid detoxification. In prokaryotes, arsenic detoxification is accomplished by chromosomal and plasmid-borne operon-encoded efflux systems. Bacterial ArsA ATPase is the catalytic component of an oxyanion pump that is responsible for resistance to arsenite (As(III)) and antimonite (Sb(III)). Here, we describe the identification of a Caenorhabditis elegans homolog (asna-1) that encodes the ATPase component of the Escherichia coli As(III) and Sb(III) transporter. We evaluated the responses of wild-type and asna-1-mutant nematodes to various metal ions and found that asna-1-mutant nematodes are more sensitive to As(III) and Sb(III) toxicity than are wild-type animals. These results provide evidence that ASNA-1 is required for C. elegans' defense against As(III) and Sb(III) toxicity. A purified maltose-binding protein (MBP)-ASNA-1 fusion protein was biochemically characterized, and its properties compared with those of ArsAs. The ATPase activity of the ASNA-1 protein was dependent on the presence of As(III) or Sb(III). As(III) stimulated ATPase activity by 2 +/- 0.2-fold, whereas Sb(III) stimulated it by 4.6 +/- 0.15-fold. The results indicate that As(III)- and Sb(III)-stimulated ArsA ATPase activities are not restricted to bacteria, but extend to animals, by demonstrating that the asna-1 gene from the nematode, C. elegans, encodes a functional ArsA ATPase whose activity is stimulated by As(III) and Sb(III) and which is critical for As(III) and Sb(III) tolerance in the intact organism.  相似文献   

14.
Equilibrium-dialysis experiments with 59Fe-labelled Fe(III) chelate solutions show that ferritin is capable of binding a limited number of Fe(III) atoms. Some of this Fe(III) is readily removed, but up to about 200 Fe(III) atoms/molecule remain bound after extensive washing. Some exchange of labelled Fe(III) with endogenous unlabelled ferritin Fe occurs during prolonged dialysis against 59Fe(III)-citrate, but there is a net binding of Fe(III). Bound Fe(III) resembles endogenous Fe(III) in several respects. It appears to be attached to the micelle and not to the protein component of ferritin. Although the physiological mechanism of Fe incorporation into ferritin is unknown, our experiments suggest the possibility that some iron finds its way into ferritin as Fe(III) chelate.  相似文献   

15.
16.
The iron porphyrin derivatives, iron (III) meso-tetra(4-N-methylpyridyl)-porphine (Fe(III)T4MPyP), aceto-iron (III) meso-tetra(3-N-methylpyridyl)porporphine (AcO-Fe(III)T3MPyP), and iron (III) meso-tetra(p-sulfonatophenyl)-porphine (Fe(III)TSPP), have been shown to induce strand scissions in DNA. Incubation of these porphyrins with PM2 DNA results in the conversion of circular supercoiled DNA to the nicked circular duplex form. The presence of dithiothreitol increases the extent of the nicking reaction. Fe(III)TSPP, which, unlike Fe(III)T4MPyP and AcO-Fe(III)T3MPyP, does not bind to DNA, is the least effective of the three porphyrins in inducing strand scissions in PM2. Both Fe(III)T4MPyP and AcO-Fe(III)T3MPyP induce strand scissions in cellular DNA of pre-labeled HeLa S3 cells while Fe(III)TSPP has a very limited effect.  相似文献   

17.
Thin-layer chromatographic systems are described for the analysis of various performed metal complex dyes (aluminon-chromium (III), carminic acid-aluminum, carminic acid-chromium (III), carminic acid-iron (III), celestine blue-chromium (III), gallamine blue-chromium (III), gallocyanin-chromium (III), hematein-aluminum, hematein-chromium (III), purpurin-aluminum) and their parent dyes. Certain of these dyes have also been analysed by agar-gel electrophoresis or gel-filtration chromatography. The merits of the three analytical methods are discussed.  相似文献   

18.
In vitro metabolism of juvenile hormone III (JH III) and juvenile hormone III bisepoxide was investigated using purified mouse liver cytosolic epoxide hydrolase (cEH) and cell fractions from Drosophila melanogaster. JH III was metabolized faster than JH III bisepoxide by epoxide hydrolase activity in D. melanogaster cell fractions and by cEH. After incubation with JH III bisepoxide, all cell fractions and cEH produced epoxy-diol, cis- and trans-tetrahydrofuran-diols, and tetraol as metabolites. An increase in the concentration of cEH resulted in an increase in the proportion of tetraol as a JH III bisepoxide metabolite but this trend was not observed in the D. melanogaster cell fractions. Differences between cell fractions in the metabolism of JH III and JH III bisepoxide suggests the presence of juvenile hormone epoxide hydrolase isozymes.  相似文献   

19.
Methylation of inorganic arsenic is a central process in the organoarsenical biogeochemical cycle. Members of every kingdom have ArsM As(III) S‐adenosylmethionine (SAM) methyltransferases that methylates inorganic As(III) into mono‐ (MAs(III)), di‐ (DMAs(III)) and tri‐ (TMAs(III)) methylarsenicals. Every characterized ArsM to date has four conserved cysteine residues. All four cysteines are required for methylation of As(III) to MAs(III), but methylation of MAs(III) to DMAs(III) requires only the two cysteines closest to the C‐terminus. Fungi produce volatile and toxic arsines, but the physiological roles of arsenic methylation and the biochemical basis is unknown. Here they demonstrate that most fungal species have ArsM orthologs with only three conserved cysteine residues. The genome of Aspergillus fumigatus has four arsM genes encoding ArsMs with only the second, third and fourth conserved cysteine residues. AfArsM1 methylates MAs(III) but not As(III). Heterologous expression of AfarsM1 in an Escherichia coli conferred resistance to MAs(III) but not As(III). The existence of ArsMs with only three conserved cysteine residues suggest that the ability to methylate MAs(III) may be an evolutionary step toward enzymes capable of methylating As(III), the result of a loss of function mutation in organisms with infrequent exposure to inorganic As(III) or as a resistance mechanism for MAs(III).  相似文献   

20.
Difructose anhydride III (DFA III), the smallest cyclic disaccharide, consists of two fructose residues. DFA III is a hydrolysate of inulin and is rarely found in nature. Industrial interest in DFA III as a low-calorie sugar substitute is increasing. The present review describes the properties and physiological functions of DFA III as well as its commercial importance. Focus is also given on the biological production of DFA III from inulin, which contains enzyme resources, inulase II properties, and the capacity for mass DFA III production. Inulase II as an industrial enzyme and its molecular evolution are discussed as well. The aim is to better understand commercial-scale DFA III production as a food product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号