首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chondrocytes can be isolated from human adult cartilage from metatarsal phalangeal joints. After enzymatic digestion to isolate viable cells, confluent monolayers were obtained 2-4 weeks after the start of cell division. Chondrocytes cultures, initiated and maintained in HAM's F12 with bovine fetal serum without the addition of other growth factors, produced in vitro a matrix rich in collagen and proteoglycans. Although several studies reported phenotypic instability, our results showed that the cell retain for more than 5 months in culture their differentiated characteristics, including the ability to produce cartilage-specific molecules. Chondrocyte cell lines should be useful in studying the functions of these cells from normal and abnormal tissue and for pharmacological studies in vitro.  相似文献   

2.
Osteoarthritis (OA) is the most common disease of joint tissues; unfortunately, there are currently no curative therapies available for OA. Chondrocytes, the only cell type residing in cartilage, secrete many types of collagen (the mainly one is type II collagen) and aggrecan, which are the main components of the cartilage matrix. Chondrocyte apoptosis can lead to OA degenerative progression. We previously indicated that recombinant human midkine (rhMK), as a chondrocyte growth factor has a significant reparative effect on cartilage injury animal models. However, the molecular mechanism of this restorative function remains under investigation. Herein, we focused on the molecular mechanism underlying the role of MK in promoting the proliferation of chondrocytes cultured in vitro. Chondrocytes from rats and OA patients were successfully isolated by the digestion of articular cartilage using type II collagenase, and their proliferation was evaluated by a CCK8 assay and flow cytometry. rhMK stimulated the proliferation of chondrocytes from both OA patients and rats. Furthermore, qRT-PCR, shRNA-mediated knockdown, Western blot and immunoprecipitation (IP) assays were performed to identify the receptor and key elements responsible for the role of MK in promoting chondrocyte proliferation. Low-density lipoprotein receptor-related protein 1 (LRP1) was identified as the dominant MK receptor in chondrocytes that, as a translocator, mediates the endocytosis of MK. After being transferred into chondrocytes, MK was shown to form a complex with nucleolin that interacts with the active form of K-Ras. Upon the activation of ERK1/2, cyclin D1 expression was upregulated, promoting the chondrocyte cell cycle. Our data reveal for the first time the role of the MK-LRP1-nucleolin signaling pathway in facilitating MK-induced chondrocyte proliferation, thus providing a strong theoretical foundation for the further use of MK in OA clinical therapy.  相似文献   

3.
MMP-13 is induced during chondrocyte hypertrophy   总被引:4,自引:0,他引:4  
During development, mRNA for matrix metalloproteinase-13 (MMP-13) is found associated with cartilage undergoing hypertrophy, suggesting that this collagenase plays a role in cell enlargement and/or cartilage calcification. Using chondrocytes from prehypertrophic cartilage of chick embryo sternae, we have examined the relationship between MMP-13 expression and the transition to hypertrophy. When hypertrophy was induced by serum-free culture with ascorbate and bone morphogenetic protein-2 (BMP-2), MMP-13 mRNA levels paralleled those for type X collagen. Chondrocytes from the caudal, nonhypertrophying portion of chick sternae expressed neither type X collagen nor MMP-13, confirming that MMP-13 mRNA is a marker for hypertrophy. Zymography with conditioned medium yielded a proteinase band at 59 kDa, which was absent in nonhypertrophic chondrocytes. A polyclonal antibody raised against chick MMP-13 reacted with the 59-kDa protein, confirming that it is MMP-13. Although mRNA for MMP-13 peaked at days 4-5 of culture, only low levels of MMP-13 activity were present, and the activity increased gradually in parallel with later increases in MMP-2. These results suggest that MMP-13 is activated by MMP-2 during chondrocyte maturation, and that the combination of both proteinases is required to prepare cartilage matrix for subsequent calcification, before endochondral ossification.  相似文献   

4.
The effects of hyaluronic acid (HA) derivative on the proliferation and metabolism of human chondrocytes were examined. Cells were obtained from cartilage from metatarsal phalangeal joints of 20 adult humans (aged 22-63) and from femoral knee condyles of 10 subjects (aged 22-77). Chondrocytes isolated by collagenase/Dnase digestion were cultured with addition of different doses of HA for 4 weeks. Morphological studies demonstrated that HA enhanced the adhesion of cells to substrate; HA-treated chondrocytes proliferated better than chondrocytes cultured in HA-free medium. This study shows that HA improves in vitro substrate adhesion ability and proliferative activity of human cartilage cells and that the response to the treatment varies on an individual basis.  相似文献   

5.
Characteristics of human chondrocyte cultures in completely defined medium   总被引:1,自引:0,他引:1  
Summary Chondrocytes derived from normal human adult articular cartilage were established and maintained for over 5 months in a completely defined medium without the addition of serum or any other growth factors. At the end of 5 months, these cells were still metabolically active. The cells incorporated [3H]thymidine into DNA, incorporated [35S]sulfate into proteoglycans, and exhibited lysosomal enzyme activities. The35S-labeled proteoglycans isolated from the culture medium had elution profiles on high pressure liquid chromatography (HPCL) similar to those observed from proteoglycans from other mammalian sources. This self-contained growth competence may reflect a need produced by the unusual avascular and alymphatic character of articular cartilage. This research was supported, in part, by Grant AM22057 from the National Institutes of Health, Bethesda, MD.  相似文献   

6.
7.
Auricular cartilage is an attractive potential source of cells for many tissue engineering applications. However, there are several requirements that have to be fulfilled in order to develop a suitable tissue engineered implant. Animal experiments serve as important tools for validating novel concepts of cartilage regeneration; therefore rabbit auricular chondrocytes were studied. Various parameters including isolation procedures, passage number, rate of proliferation and gene expression profile for major extracellular matrix components were evaluated in order to assess the potential use of elastic chondrocytes for tissue engineering. Chondrocytes were isolated from rabbit ear cartilage and grown in monolayer cultures over four passages. Yields of harvested cells and proliferation were analysed from the digestion step to the fourth passage, and changes in phenotype were monitored. The proliferation capacity of cell cultures decreased during cultivation and was accompanied by enlargement of cells, this phenomenon being especially evident in the third and fourth passages. The expression of cartilage specific genes for collagen type II, aggrecan and cartilage non-specific collagen type I was determined. The mRNA levels for all three genes were obviously lower in the primo culture than immediately after isolation. During subsequent cultivation the expression of collagen type II decreased further, while there were only slight changes in expression of aggrecan and collagen type I. This study provides a valuable basis for testing of different tissue engineering applications in rabbit model, where auricular chondrocytes are considered as cell source.  相似文献   

8.
Chondrocytes, the only cell type present in articular cartilage, regulate tissue homeostasis by a fine balance of metabolism that includes both anabolic and catabolic activities. Therefore, the biology of chondrocytes is critical for understanding cartilage metabolism. One major limitation when studying primary chondrocytes in culture is their loss of phenotype. To overcome this hurdle, limited attempts have been made to develop human chondrocyte cell lines that retain the phenotype for use as a good surrogate model. In this study, we report a novel approach to the establishment and characterization of human articular cartilage‐derived chondrocyte cell lines. Adenoviral infection followed by culture of chondrocytes in 3‐dimensional matrix within 48 h post‐infection maintained the phenotype prior to clonal selection. Cells were then placed in culture either as monolayer, or in 3‐dimensional matrix of alginate or agarose. The clones were characterized by their basal gene expression profile of chondrocyte markers. Based on type II collagen expression, 21 clones were analyzed for gene expression following treatment with IL‐1 or BMP‐7 and compared to similarly stimulated primary chondrocytes. This resulted in selection of two clones that retained the chondrocyte phenotype as evidenced by expression of type II collagen and other extra‐cellular matrix molecules. In addition, one clone (AL‐4‐17) showed similar responses as primary chondrocytes when treated with IL‐1 or BMP‐7. In summary, this report provides a novel procedure to develop human articular cartilage‐derived chondrocyte cell lines, which preserve important characteristics of articular chondrocytes and represent a useful model to study chondrocyte biology. J. Cell. Physiol. 222: 695–702, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
An established rat cell line expressing chondrocyte properties   总被引:7,自引:0,他引:7  
Chondrocytes express a well-characterized set of marker proteins making these cells useful for studies on differentiation and regulation of gene expression. Because of the inherent instability of primary rat chondrocytes in culture, and because several rat chondrocyte genes have been cloned and characterized (including the collagen II promoter and enhancer), a rat chondrocyte cell line would be especially useful. To obtain this line we infected primary fetal rat costal chondrocytes with a recombinant retrovirus (NIH/J-2) carrying the myc and raf oncogenes, which have been shown to have an "immortalizing" function. Following infection, a rapidly proliferating clonal line was isolated that maintained a stable phenotype through 45 passages (11/2 year in culture). This line, termed IRC, grows in suspension culture as multicellular aggregates and in monolayer culture as polygonal cells which accumulate an alcian blue-stainable matrix. IRC cells synthesize high levels of cartilage proteoglycan core protein, and link protein, but show reduced collagen II expression. In addition, the cells express virally derived myc mRNA and protein, but do not express v-raf. Retinoic acid, which is a known modulator of chondrocyte phenotype, down-regulates expression of chondrocyte marker proteins, while stimulating v-myc expression by IRC cells. These data suggest that v-myc expression by chondrocytes results in rapid cell division and maintenance of many aspects of the differentiated phenotype. These "immortalized" cells, however, remain responsive to agents such as retinoic acid which modulate cell phenotype. The potential exists for development of chondrocyte cell lines from diseased cartilage, as well as from human cartilage.  相似文献   

10.
Chondrocytes depend upon solute transport within the avascular extracellular matrix of adult articular cartilage for many of their biological activities. Alterations to bioactive solute transport may, therefore, represent a mechanism by which cartilage compression is transduced into cellular metabolic responses. We investigated the effects of cartilage static compression on diffusivity and partitioning of a range of model solutes including dextrans of molecular weights 3 and 40 kDa, and tetramethylrhodamine (a 430 Da fluorophore). New fluorescence methods were developed for real-time visualization and measurement of transport within compressed cartilage explants. Experimental design allowed for multiple measurements on individual explants at different compression levels in order to minimize confounding influences of compositional variations. Results demonstrate that physiological levels of static compression may significantly decrease solute diffusivity and partitioning in cartilage. Effects of compression were most dramatic for the relatively high molecular weight solutes. For 40 kDa dextran, diffusivity decreased significantly (p<0.01) between 8% and 23% compression, while partitioning of 3 and 40 kDa dextran decreased significantly (p<0.01) between free-swelling conditions and 8% compression. Since diffusivity and partitioning can influence pericellular concentrations of bioactive solutes, these observations support a role for perturbations to solute transport in mediating the cartilage biological response to compression.  相似文献   

11.
VEGFA is necessary for chondrocyte survival during bone development   总被引:18,自引:0,他引:18  
To directly examine the role of vascular endothelial growth factor (VEGFA) in cartilage development, we conditionally knocked out Vegfa in chondrocytes, using the Col2a1 promoter to drive expression of Cre recombinase. Our study of Vegfa conditional knockout (CKO) mice provides new in-vivo evidence for two important functions of VEGFA in bone formation. First, VEGFA plays a significant role in both early and late stages of cartilage vascularization, since Vegfa CKO mice showed delayed invasion of blood vessels into primary ossification centers and delayed removal of terminal hypertrophic chondrocytes. Second, VEGFA is crucial for chondrocyte survival, since massive cell death was seen in joint and epiphyseal regions of Vegfa CKO endochondral bones. Chondrocytes in these regions were found to upregulate expression of Vegfa in wild-type mice at the time when massive cell death occurred in the Vegfa CKO mice. The expression of the VEGFA receptors Npr1 and Npr2 in epiphyseal chondrocytes and lack of blood vessel reduction in the vicinity of the cartilaginous elements in the Vegfa CKO mice raise the possibility that the observed cell death is the result of a direct involvement of VEGFA in chondrocyte survival. Interestingly, the extensive cell death seen in Vegfa CKO null bones had a striking similarity to the cell death phenotype observed when hypoxia-inducible factor 1 alpha (Hif1a) expression was abolished in developing cartilage. This similarity of cell death phenotypes and the deficient VEGFA production in Hif1a null epiphyseal chondrocytes demonstrate that HIF1 alpha and VEGFA are components of a key pathway to support chondrocyte survival during embryonic bone development.  相似文献   

12.
13.
Lee KM  Ye GL  Yung WH  Leung KS  Leung PC 《Life sciences》2001,69(6):721-728
A new in situ model of partially digested growth plate cartilage suitable for patch clamp study of membrane currents of chondrocytes from various differentiation stages was developed. Thin sections of growth plate were enzyme digested to expose intact membranes of chondrocytes previously covered by extracellular matrix. This treatment dramatically increased the success rate of tight-seal formation from virtually 0% up to 40%. Whole-cell patch clamp recording revealed a delayed outward rectifying current as the major macroscopic current in chondrocytes of all differentiation stages. This current was sensitive to tetraethylammonium chloride and reversed polarity at a membrane potential close to the equilibrium potential of K+. Chondrocytes at resting stage expressed a much smaller K+ current than the proliferative and hypertrophic chondrocytes. When the current amplitudes were normalized for the cell membrane area, proliferative cells expressed a significantly higher outward current density.  相似文献   

14.
Chondrocytes in arthriticcartilage respond poorly to insulin-like growth factor I (IGF-I).Studies with inducible nitric oxide synthase (iNOS) knockout micesuggest that NO is responsible for part of the cartilage insensitivityto IGF-I. These studies characterize the relationship between NO andchondrocyte responses to IGF-I in vitro, and define a mechanism bywhich NO decreases IGF-I stimulation of chondrocyte proteoglycansynthesis. Lapine cartilage slices, chondrocytes, and cartilage fromosteoarthritic (OA) human knees were exposed to NO from the donorsS-nitroso-N-acetylpenicillamine (SNAP) or(Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate] (DETA NONOate), by transduction with adenoviral transfer of iNOS (Ad-iNOS), or by activation with interleukin-1 (IL-1). NOsynthesis was estimated from medium nitrite, and proteoglycan synthesis was measured as incorporation of 35SO4. IGF-Ireceptor phosphorylation was evaluated with Western analysis. SNAP,DETA NONOate, endogenously synthesized NO in Ad-iNOS-transduced cells,or IL-1 activation decreased IGF-I-stimulated proteoglycan synthesis incartilage and monolayer cultures of chondrocytes. OA cartilageresponded poorly to IGF-I; however, the response to IGF-I was restoredby culture withNG-monomethyl-L-arginine(L-NMA). IGF-I receptor phosphotyrosine was diminished inchondrocytes exposed to NO. These studies show that NO is responsiblefor part of arthritic cartilage/chondrocyte insensitivity to anabolicactions of IGF-I; inhibition of receptor autophosphorylation ispotentially responsible for this effect.

  相似文献   

15.
The objective of this study was to test the hypothesis that extracellular matrix (ECM) would alter the endoplasmic reticulum (ER) stress response of chondrocytes. Chondrocytes were isolated from calf knees and maintained in monolayer culture or suspended in collagen I to form spot cultures (SCs). Our laboratory has shown that bovine chondrocytes form cartilage with properties similar to native cartilage after 2-4 weeks in SCs. Monolayer cultures treated with ER stressors glucose withdrawal (-Glu), tunicamycin (TN), or thapsigargin (TG) up-regulated Grp78 and Gadd153, demonstrating a complete ER stress response. SCs were grown at specific times from 1 day to 6 weeks before treatment with ER stressors. Additionally, SCs grown for 1, 2, or 6 weeks were treated with increasing concentrations of TN or TG. Western blotting of SCs for Grp78 indicated that increased ECM accumulation results in delayed expression; however, Grp78 mRNA is up-regulated in response to ER stressors even after 6 weeks in culture. SCs treated with ER stressors did not up-regulate Gadd153, suggesting that the cells experienced ER stress but would not undergo apoptosis. In fact, SCs undergo apoptosis upon ER stress treatment after 0-1 day of growth; however, after 4 days and to 6 weeks, apoptosis in treated samples was not different than controls. Pro-survival molecules Bcl-2 and Bag-1 were up-regulated upon ER stress in SCs. These results suggest that presence of ECM confers protection from ER stressors. Future studies involving chondrocyte physiology should focus on responses in conditions more closely mimicking the in vivo cartilage environment.  相似文献   

16.
17.
The human amniotic membrane (HAM) is an abundant and readily obtained tissue that may be an important source of scaffold for transplanted chondrocytes in cartilage regeneration in vivo. To evaluate the potential use of cryopreserved HAMs as a support system for human chondrocytes in human articular cartilage repair. Chondrocytes were isolated from human articular cartilage, cultured and grown on the chorionic basement membrane side of HAMs. HAMs with chondrocytes were then used in 44 in vitro human osteoarthritis cartilage repair trials. Repair was evaluated at 4, 8 and 16 weeks by histological analysis. Chondrocytes cultured on the HAM revealed that cells grew on the chorionic basement membrane layer, but not on the epithelial side. Chondrocytes grown on the chorionic side of the HAM express type II collagen but not type I, indicating that after being in culture for 3–4 weeks they had not de-differentiated into fibroblasts. In vitro repair experiments showed formation on OA cartilage of new tissue expressing type II collagen. Integration of the new tissue with OA cartilage was excellent. The results indicate that cryopreserved HAMs can be used to support chondrocyte proliferation for transplantation therapy to repair OA cartilage.  相似文献   

18.
Chondrocytes are specialised cells which produce and maintain the extracellular matrix of cartilage, a tissue that is resilient and pliant. In vivo, it has to withstand very high compressive loads, and that is explicable in terms of the physico-chemical properties of cartilage-specific macromolecules and with the movement of water and ions within the matrix. The functions of the cartilage-specific collagens, aggrecan (a hydrophilic proteoglycan) and hyaluronan are discussed within this context. The structures of cartilage collagens and proteoglycans and their genes are known and a number of informative mutations have been identified. In particular, collagen fibrillogenesis is a complex process which can be altered by mutations whose effects fit what is known about collagen molecular structural functions. In other instances, mutations have indicated new functions for particular molecular domains. As cartilage provides the template for the developing skeleton, mutations in genes for cartilage-specific proteins often produce developmental abnormalities. The search for mutations amongst such genes in heritable disorders is being actively pursued by many groups, although mutation and phenotype are not always well correlated, probably because of compensatory mechanisms. The special nature of the chondrocyte is stressed in connection with its cell involvement in osteoarthritis, the most widespread disease of diarthrodial joints.  相似文献   

19.
BACKGROUND: The possible functional role of basic fibroblast growth factor (bFGF) in regulating the mitotic and metabolic activity of primary human articular chondrocytes was investigated. METHODS: [EF1]Chondrocytes were enzymatically isolated from femoral head cartilage, and were cultured in vitro in monolayer. bFGF-dependent cell proliferation, production of collagen type II and aggrecan were monitored 10 days after isolation. Furthermore, effect of bFGF on cell cycle, cell morphology, and mRNA expression of integrins and chondrogenic markers determined by real time PCR were analyzed. RESULTS: bFGF concentrations in supernatants of primary human articular chondrocytes peaked immediately after isolation and then declined. In a dose-dependent manner, bFGF enhanced cell amplification and viability. BFGF induced a decrease in the apoptotic cell population, while the number of proliferating cells remained unchanged. Supplementation of cell culture with bFGF reduced collagen type II mRNA by 49%, but increased expression of the integrin alpha(2) by 70%. bFGF did not significantly regulate the integrins alpha(1), alpha(5), alpha(10), alpha(v) and type I collagen. bFGF reduced the amount of collagen type II by 53%, which was correlated with diminished mRNA production. Monolayer cultured chondrocytes secreted significant amounts of aggrecan that decreased over time. Secretion of this cartilage-specific marker was further reduced by the addition of bFGF. DISCUSSION: These findings highlight the potential role of bFGF as an endogenous chondrocyte mediator that can enhance cell amplification and regulate cell differentiation.  相似文献   

20.
Differentiating cells interact with their extracellular environment over time. Chondrocytes embed themselves in a proteoglycan (PG)-rich matrix, then undergo a developmental transition, termed "maturation," when they express ihh to induce bone in the overlying tissue, the perichondrium. Here, we ask whether PGs regulate interactions between chondrocytes and perichondrium, using zebrafish mutants to reveal that cartilage PGs inhibit chondrocyte maturation, which ultimately dictates the timing of perichondral bone development. In a mutagenesis screen, we isolated a class of mutants with decreased cartilage matrix and increased perichondral bone. Positional cloning identified lesions in two genes, fam20b and xylosyltransferase1 (xylt1), both of which encode PG synthesis enzymes. Mutants failed to produce wild-type levels of chondroitin sulfate PGs, which are normally abundant in cartilage matrix, and initiated perichondral bone formation earlier than their wild-type siblings. Primary chondrocyte defects might induce the bone phenotype secondarily, because mutant chondrocytes precociously initiated maturation, showing increased and early expression of such markers as runx2b, collagen type 10a1, and ihh co-orthologs, and ihha mutation suppressed early perichondral bone in PG mutants. Ultrastructural analyses demonstrated aberrant matrix organization and also early cellular features of chondrocyte hypertrophy in mutants. Refining previous in vitro reports, which demonstrated that fam20b and xylt1 were involved in PG synthesis, our in vivo analyses reveal that these genes function in cartilage matrix production and ultimately regulate the timing of skeletal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号